Jian Wang, Wen Yang, Hongjian Xie, Yu Song, Yongkui Li, Lin Wang
{"title":"缺血性中风和修复:目前的研究趋势和组织工程治疗。","authors":"Jian Wang, Wen Yang, Hongjian Xie, Yu Song, Yongkui Li, Lin Wang","doi":"10.1186/2050-490X-2-3","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke, the third leading cause of mortality, is usually associated with severe disabilities, high recurrence rate and other poor outcomes. Currently, there are no long-term effective treatments for stroke. Cell and cytokine therapies have been explored previously. However, the therapeutic outcomes are often limited by poor survival of transplanted cells, uncontrolled cell differentiation, ineffective engraftment with host tissues and non-sustained delivery of growth factors. A tissue-engineering approach provides an alternative for treating ischemic stroke. The key design considerations for the tissue engineering approach include: choice of scaffold materials, choice of cells and cytokines and delivery methods. Here, we review current cell and biomaterial based therapies available for ischemic stroke, with a special focus on tissue-engineering strategies for regeneration of stroke-affected neuronal tissue. </p>","PeriodicalId":42378,"journal":{"name":"Regenerative Medicine Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2050-490X-2-3","citationCount":"37","resultStr":"{\"title\":\"Ischemic stroke and repair: current trends in research and tissue engineering treatments.\",\"authors\":\"Jian Wang, Wen Yang, Hongjian Xie, Yu Song, Yongkui Li, Lin Wang\",\"doi\":\"10.1186/2050-490X-2-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke, the third leading cause of mortality, is usually associated with severe disabilities, high recurrence rate and other poor outcomes. Currently, there are no long-term effective treatments for stroke. Cell and cytokine therapies have been explored previously. However, the therapeutic outcomes are often limited by poor survival of transplanted cells, uncontrolled cell differentiation, ineffective engraftment with host tissues and non-sustained delivery of growth factors. A tissue-engineering approach provides an alternative for treating ischemic stroke. The key design considerations for the tissue engineering approach include: choice of scaffold materials, choice of cells and cytokines and delivery methods. Here, we review current cell and biomaterial based therapies available for ischemic stroke, with a special focus on tissue-engineering strategies for regeneration of stroke-affected neuronal tissue. </p>\",\"PeriodicalId\":42378,\"journal\":{\"name\":\"Regenerative Medicine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2050-490X-2-3\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Medicine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2050-490X-2-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Medicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2050-490X-2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Ischemic stroke and repair: current trends in research and tissue engineering treatments.
Stroke, the third leading cause of mortality, is usually associated with severe disabilities, high recurrence rate and other poor outcomes. Currently, there are no long-term effective treatments for stroke. Cell and cytokine therapies have been explored previously. However, the therapeutic outcomes are often limited by poor survival of transplanted cells, uncontrolled cell differentiation, ineffective engraftment with host tissues and non-sustained delivery of growth factors. A tissue-engineering approach provides an alternative for treating ischemic stroke. The key design considerations for the tissue engineering approach include: choice of scaffold materials, choice of cells and cytokines and delivery methods. Here, we review current cell and biomaterial based therapies available for ischemic stroke, with a special focus on tissue-engineering strategies for regeneration of stroke-affected neuronal tissue.