{"title":"人类诱导多能干细胞模拟心血管疾病。","authors":"Ping Liang, Jie Du","doi":"10.1186/2050-490X-2-4","DOIUrl":null,"url":null,"abstract":"<p><p>The invention of the induced pluripotent stem cell (iPSC) technology allows patient-specific, mature somatic cells to be converted into an unlimited supply of pluripotent stem cells (PSCs). These iPSCs can then in turn be differentiated into any cell type including neurons, cardiac cells, pancreatic cells, liver cells, blood cells or enterocytes. Although cardiovascular disease (CVD) is a leading cause of death in the world, the limited cell derivation and cell number in cardiac tissue makes it difficult to study the CVDs using the existing cardiac cell model. By differentiating the patient-specific iPSCs into cardiomyocytes, scientists can generate iPSC-based 'disease in a dish' models and use them to better understand disease mechanism. Here we review the current progress in using iPSC-derived cardiomyocytes to model human CVDs. </p>","PeriodicalId":42378,"journal":{"name":"Regenerative Medicine Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2050-490X-2-4","citationCount":"20","resultStr":"{\"title\":\"Human induced pluripotent stem cell for modeling cardiovascular diseases.\",\"authors\":\"Ping Liang, Jie Du\",\"doi\":\"10.1186/2050-490X-2-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The invention of the induced pluripotent stem cell (iPSC) technology allows patient-specific, mature somatic cells to be converted into an unlimited supply of pluripotent stem cells (PSCs). These iPSCs can then in turn be differentiated into any cell type including neurons, cardiac cells, pancreatic cells, liver cells, blood cells or enterocytes. Although cardiovascular disease (CVD) is a leading cause of death in the world, the limited cell derivation and cell number in cardiac tissue makes it difficult to study the CVDs using the existing cardiac cell model. By differentiating the patient-specific iPSCs into cardiomyocytes, scientists can generate iPSC-based 'disease in a dish' models and use them to better understand disease mechanism. Here we review the current progress in using iPSC-derived cardiomyocytes to model human CVDs. </p>\",\"PeriodicalId\":42378,\"journal\":{\"name\":\"Regenerative Medicine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2050-490X-2-4\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Medicine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2050-490X-2-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Medicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2050-490X-2-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Human induced pluripotent stem cell for modeling cardiovascular diseases.
The invention of the induced pluripotent stem cell (iPSC) technology allows patient-specific, mature somatic cells to be converted into an unlimited supply of pluripotent stem cells (PSCs). These iPSCs can then in turn be differentiated into any cell type including neurons, cardiac cells, pancreatic cells, liver cells, blood cells or enterocytes. Although cardiovascular disease (CVD) is a leading cause of death in the world, the limited cell derivation and cell number in cardiac tissue makes it difficult to study the CVDs using the existing cardiac cell model. By differentiating the patient-specific iPSCs into cardiomyocytes, scientists can generate iPSC-based 'disease in a dish' models and use them to better understand disease mechanism. Here we review the current progress in using iPSC-derived cardiomyocytes to model human CVDs.