Dempster-Shafer信念网络预测易发故障模块。

Lan Guo, Bojan Cukic, Harshinder Singh
{"title":"Dempster-Shafer信念网络预测易发故障模块。","authors":"Lan Guo,&nbsp;Bojan Cukic,&nbsp;Harshinder Singh","doi":"10.1109/ASE.2003.1240314","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a novel methodology for predicting fault prone modules. The methodology is based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors (attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the current project into the inducted Dempster-Shafer network and identifying fault prone modules. We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is higher than that achieved by logistic regression or discriminant analysis on the same dataset.</p>","PeriodicalId":90954,"journal":{"name":"Proceedings. IEEE International Automated Software Engineering Conference","volume":"2003 ","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ASE.2003.1240314","citationCount":"93","resultStr":"{\"title\":\"Predicting Fault Prone Modules by the Dempster-Shafer Belief Networks.\",\"authors\":\"Lan Guo,&nbsp;Bojan Cukic,&nbsp;Harshinder Singh\",\"doi\":\"10.1109/ASE.2003.1240314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes a novel methodology for predicting fault prone modules. The methodology is based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors (attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the current project into the inducted Dempster-Shafer network and identifying fault prone modules. We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is higher than that achieved by logistic regression or discriminant analysis on the same dataset.</p>\",\"PeriodicalId\":90954,\"journal\":{\"name\":\"Proceedings. IEEE International Automated Software Engineering Conference\",\"volume\":\"2003 \",\"pages\":\"249-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ASE.2003.1240314\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Automated Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2003.1240314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Automated Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2003.1240314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

本文描述了一种预测易发故障模块的新方法。该方法基于Dempster-Shafer (D-S)信念网络。我们的方法包括三个步骤:首先,通过归纳算法构建Dempster-Shafer网络;其次,通过逻辑过程选择预测因子(属性);第三,将描述当前项目模块的预测因子输入到诱导的Dempster-Shafer网络中,识别出易发生故障的模块。我们将这种方法应用于NASA的数据集。该方法的预测精度高于同一数据集上的逻辑回归或判别分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Fault Prone Modules by the Dempster-Shafer Belief Networks.

This paper describes a novel methodology for predicting fault prone modules. The methodology is based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors (attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the current project into the inducted Dempster-Shafer network and identifying fault prone modules. We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is higher than that achieved by logistic regression or discriminant analysis on the same dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信