Sergey A Shiryaev, Albert G Remacle, Piotr Cieplak, Alex Y Strongin
{"title":"产肠毒素的脆弱拟杆菌金属蛋白酶II与e -钙粘蛋白相互作用的肽序列区域。","authors":"Sergey A Shiryaev, Albert G Remacle, Piotr Cieplak, Alex Y Strongin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacteroides fragilis</i> is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. <i>fragilis</i>. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. <i>fragilis</i>.</p>","PeriodicalId":90907,"journal":{"name":"Journal of proteolysis","volume":"1 1","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425422/pdf/nihms656349.pdf","citationCount":"0","resultStr":"{\"title\":\"Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin.\",\"authors\":\"Sergey A Shiryaev, Albert G Remacle, Piotr Cieplak, Alex Y Strongin\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Bacteroides fragilis</i> is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. <i>fragilis</i>. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. <i>fragilis</i>.</p>\",\"PeriodicalId\":90907,\"journal\":{\"name\":\"Journal of proteolysis\",\"volume\":\"1 1\",\"pages\":\"3-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425422/pdf/nihms656349.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of proteolysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteolysis","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin.
Bacteroides fragilis is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. fragilis. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. fragilis.