Yoshio Okada, Yuko Tsuda, Severo Salvadori, Lawrence H Lazarus
{"title":"类阿片药物内啡肽的发展潜力。","authors":"Yoshio Okada, Yuko Tsuda, Severo Salvadori, Lawrence H Lazarus","doi":"10.1155/2012/715123","DOIUrl":null,"url":null,"abstract":"<p><p>Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr(1) with 2',6'-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt(1)]EM-1 and [Dmt(1)]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt(1)]EM-1 (47) and [N-allyl-Dmt(1)]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"715123"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/715123","citationCount":"4","resultStr":"{\"title\":\"Developmental potential for endomorphin opioidmimetic drugs.\",\"authors\":\"Yoshio Okada, Yuko Tsuda, Severo Salvadori, Lawrence H Lazarus\",\"doi\":\"10.1155/2012/715123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr(1) with 2',6'-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt(1)]EM-1 and [Dmt(1)]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt(1)]EM-1 (47) and [N-allyl-Dmt(1)]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier. </p>\",\"PeriodicalId\":14082,\"journal\":{\"name\":\"International Journal of Medicinal Chemistry\",\"volume\":\"2012 \",\"pages\":\"715123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/715123\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/715123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/715123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Developmental potential for endomorphin opioidmimetic drugs.
Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr(1) with 2',6'-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt(1)]EM-1 and [Dmt(1)]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt(1)]EM-1 (47) and [N-allyl-Dmt(1)]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier.
期刊介绍:
International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis. International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis.