恶性疟原虫多药耐药蛋白研究的计算方法

ISRN bioinformatics Pub Date : 2013-08-01 eCollection Date: 2013-01-01 DOI:10.1155/2013/437168
Saumya K Patel, Linz-Buoy George, Sivakumar Prasanth Kumar, Hyacinth N Highland, Yogesh T Jasrai, Himanshu A Pandya, Ketaki R Desai
{"title":"恶性疟原虫多药耐药蛋白研究的计算方法","authors":"Saumya K Patel, Linz-Buoy George, Sivakumar Prasanth Kumar, Hyacinth N Highland, Yogesh T Jasrai, Himanshu A Pandya, Ketaki R Desai","doi":"10.1155/2013/437168","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. </p>","PeriodicalId":90877,"journal":{"name":"ISRN bioinformatics","volume":"2013 ","pages":"437168"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393060/pdf/","citationCount":"6","resultStr":"{\"title\":\"A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.\",\"authors\":\"Saumya K Patel, Linz-Buoy George, Sivakumar Prasanth Kumar, Hyacinth N Highland, Yogesh T Jasrai, Himanshu A Pandya, Ketaki R Desai\",\"doi\":\"10.1155/2013/437168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. </p>\",\"PeriodicalId\":90877,\"journal\":{\"name\":\"ISRN bioinformatics\",\"volume\":\"2013 \",\"pages\":\"437168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393060/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/437168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/437168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

恶性疟原虫耐药性的出现极大地影响了世界范围内的化疗,而氯喹耐药菌株在大多数疟疾流行地区的密集分布给疟疾的治疗增加了更多的并发症。由于缺乏分子机制来了解疟原虫物种赋予的耐药性,情况甚至恶化了。最近的研究表明,抗疟药耐药性与恶性疟原虫多药耐药蛋白1 (PfMDR1)、atp结合盒(ABC)转运蛋白和人p -糖蛋白1 (P-gp1)的同源物有关。本研究涉及PfMDR1计算模型的发展和PfMDR1的底物运输模型,并从与打开/关闭运输系统的内向和外向拓扑相关的构象中获得见解。比较其他ATP酶的停靠位置及其结构基基结合特性发现是相似的,从而有助于NBD结构域二聚化,这在小家鼠Pgp和大肠杆菌MDR转运体同源物(MsbA)中发现了独特的结构一致性。野生型和突变型PfMDR1活性口袋内的主要抗疟药物和植物化学物质的相互作用证明了结合模式,并提供了低结合亲和力的见解,从而有助于寄生虫的抗性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信