基于优化的多标签分类条件随机场学习框架。

Mahdi Pakdaman Naeini, Iyad Batal, Zitao Liu, CharmGil Hong, Milos Hauskrecht
{"title":"基于优化的多标签分类条件随机场学习框架。","authors":"Mahdi Pakdaman Naeini,&nbsp;Iyad Batal,&nbsp;Zitao Liu,&nbsp;CharmGil Hong,&nbsp;Milos Hauskrecht","doi":"10.1137/1.9781611973440.113","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods.</p>","PeriodicalId":74533,"journal":{"name":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","volume":"2014 ","pages":"992-1000"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/1.9781611973440.113","citationCount":"5","resultStr":"{\"title\":\"An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification.\",\"authors\":\"Mahdi Pakdaman Naeini,&nbsp;Iyad Batal,&nbsp;Zitao Liu,&nbsp;CharmGil Hong,&nbsp;Milos Hauskrecht\",\"doi\":\"10.1137/1.9781611973440.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods.</p>\",\"PeriodicalId\":74533,\"journal\":{\"name\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"volume\":\"2014 \",\"pages\":\"992-1000\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1137/1.9781611973440.113\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973440.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973440.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了多标签分类问题,其中数据实例与多个可能是高维的标签向量相关联。当标签是相互依赖的,并且不能将问题分解为一组独立的分类问题时,这个问题尤其具有挑战性。为了解决这个问题并正确地表示标签依赖关系,我们提出并研究了一个成对条件随机场(CRF)模型。我们提出了一种从数据中学习CRF结构和参数的新方法。该方法将观察到的标签的伪似然最大化,并依靠快速的近端梯度下降来学习结构,依靠有限的记忆BFGS来学习模型的参数。在几个数据集上的实证结果表明,我们的方法优于几种多标签分类基线,包括最近发表的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification.

An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification.

An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification.

This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信