神经网络基元的可观察性。

Andrew J Whalen, Sean N Brennan, Timothy D Sauer, Steven J Schiff
{"title":"神经网络基元的可观察性。","authors":"Andrew J Whalen,&nbsp;Sean N Brennan,&nbsp;Timothy D Sauer,&nbsp;Steven J Schiff","doi":"10.1109/CISS.2012.6310923","DOIUrl":null,"url":null,"abstract":"<p><p>We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work.</p>","PeriodicalId":90951,"journal":{"name":"Proceedings of the ... Conference on Information Sciences and Systems. Conference on Information Sciences and Systems","volume":"2012 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CISS.2012.6310923","citationCount":"9","resultStr":"{\"title\":\"Observability of Neuronal Network Motifs.\",\"authors\":\"Andrew J Whalen,&nbsp;Sean N Brennan,&nbsp;Timothy D Sauer,&nbsp;Steven J Schiff\",\"doi\":\"10.1109/CISS.2012.6310923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work.</p>\",\"PeriodicalId\":90951,\"journal\":{\"name\":\"Proceedings of the ... Conference on Information Sciences and Systems. Conference on Information Sciences and Systems\",\"volume\":\"2012 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CISS.2012.6310923\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Conference on Information Sciences and Systems. Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2012.6310923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Conference on Information Sciences and Systems. Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2012.6310923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们将小型(3个节点)神经网络中的可观测性量化为以下函数:1)连接拓扑和对称性,2)测量节点,以及3)节点动态(线性和非线性)。我们发现典型的3个神经元图案的可观察性指标范围超过几个数量级,这取决于拓扑结构,对于包含对称性的图案,当从特别混淆的节点观察时,网络的可观察性会降低。节点方程中的非线性通常会降低网络的平均可观测性,并且只有在系统相空间的有限区域才能获得完整的网络信息。我们的研究结果表明,这些网络是部分可观察到的,并表明它们在从有限的测量数据中重建网络动态方面的潜在功效。这些策略在实验环境中如何很好地用于重建和控制网络动力学是未来实验工作的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observability of Neuronal Network Motifs.

We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信