Tanmaya Kumar Sahu, A R Rao, Prabina Kumar Meher, Bishnu Charan Sahoo, Satakshi Gupta, Anil Rai
{"title":"牛最常见病毒性疾病MHC I类表位的计算预测。","authors":"Tanmaya Kumar Sahu, A R Rao, Prabina Kumar Meher, Bishnu Charan Sahoo, Satakshi Gupta, Anil Rai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Viral diseases like foot-and-mouth disease (FMD), calf scour (CS), bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR) etc. affect the growth and milk production of cattle (Bos taurus) causing severe economic loss. Epitope-based vaccine designing have been evolved to provide a new strategy for therapeutic application of pathogen-specific immunity in animals. Therefore, identification of major histocompatibility complex (MHC) binding peptides as potential T-cell epitopes is widely applied in peptide vaccine designing and immunotherapy. In this study, MetaMHCI tool was used with seven different algorithms to predict the potential T-cell epitopes for FMD, BVD, IBR and CS in cattle. A total of 54 protein sequences were filtered out from a total set of 6351 sequences of the pathogens causing the said diseases using bioinformatics approaches. These selected protein sequences were used as the key inputs for MetaMHCI tool to predict the epitopes for the BoLA-All MHC class I allele of B. taurus. Further, the epitopes were ranked based on a proposed principal component analysis based epitope score (PbES). The best epitope for each disease based on its predictability through maximum number of predictors and low PbES was modeled in PEP-FOLD server and docked with the BoLA-A11 protein for understanding the MHC-epitope interaction. Finally, a total of 78 epitopes were predicted, out of which 27 were for FMD, 25 for BVD, 12 for CS and 14 for IBR. These epitopes could be artificially synthesized and recommended to vaccinate the cattle for the considered diseases. Besides, the methodology adapted here could also be used to predict and analyze the epitopes for other microbial diseases of important animal species.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"52 1","pages":"34-44"},"PeriodicalIF":1.5000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational prediction of MHC class I epitopes for most common viral diseases in cattle (Bos taurus).\",\"authors\":\"Tanmaya Kumar Sahu, A R Rao, Prabina Kumar Meher, Bishnu Charan Sahoo, Satakshi Gupta, Anil Rai\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viral diseases like foot-and-mouth disease (FMD), calf scour (CS), bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR) etc. affect the growth and milk production of cattle (Bos taurus) causing severe economic loss. Epitope-based vaccine designing have been evolved to provide a new strategy for therapeutic application of pathogen-specific immunity in animals. Therefore, identification of major histocompatibility complex (MHC) binding peptides as potential T-cell epitopes is widely applied in peptide vaccine designing and immunotherapy. In this study, MetaMHCI tool was used with seven different algorithms to predict the potential T-cell epitopes for FMD, BVD, IBR and CS in cattle. A total of 54 protein sequences were filtered out from a total set of 6351 sequences of the pathogens causing the said diseases using bioinformatics approaches. These selected protein sequences were used as the key inputs for MetaMHCI tool to predict the epitopes for the BoLA-All MHC class I allele of B. taurus. Further, the epitopes were ranked based on a proposed principal component analysis based epitope score (PbES). The best epitope for each disease based on its predictability through maximum number of predictors and low PbES was modeled in PEP-FOLD server and docked with the BoLA-A11 protein for understanding the MHC-epitope interaction. Finally, a total of 78 epitopes were predicted, out of which 27 were for FMD, 25 for BVD, 12 for CS and 14 for IBR. These epitopes could be artificially synthesized and recommended to vaccinate the cattle for the considered diseases. Besides, the methodology adapted here could also be used to predict and analyze the epitopes for other microbial diseases of important animal species.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"52 1\",\"pages\":\"34-44\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational prediction of MHC class I epitopes for most common viral diseases in cattle (Bos taurus).
Viral diseases like foot-and-mouth disease (FMD), calf scour (CS), bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR) etc. affect the growth and milk production of cattle (Bos taurus) causing severe economic loss. Epitope-based vaccine designing have been evolved to provide a new strategy for therapeutic application of pathogen-specific immunity in animals. Therefore, identification of major histocompatibility complex (MHC) binding peptides as potential T-cell epitopes is widely applied in peptide vaccine designing and immunotherapy. In this study, MetaMHCI tool was used with seven different algorithms to predict the potential T-cell epitopes for FMD, BVD, IBR and CS in cattle. A total of 54 protein sequences were filtered out from a total set of 6351 sequences of the pathogens causing the said diseases using bioinformatics approaches. These selected protein sequences were used as the key inputs for MetaMHCI tool to predict the epitopes for the BoLA-All MHC class I allele of B. taurus. Further, the epitopes were ranked based on a proposed principal component analysis based epitope score (PbES). The best epitope for each disease based on its predictability through maximum number of predictors and low PbES was modeled in PEP-FOLD server and docked with the BoLA-A11 protein for understanding the MHC-epitope interaction. Finally, a total of 78 epitopes were predicted, out of which 27 were for FMD, 25 for BVD, 12 for CS and 14 for IBR. These epitopes could be artificially synthesized and recommended to vaccinate the cattle for the considered diseases. Besides, the methodology adapted here could also be used to predict and analyze the epitopes for other microbial diseases of important animal species.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.