使用金字塔上下文特征的体积语义分割。

Jonathan T Barron, Pablo Arbeláez, Soile V E Keränen, Mark D Biggin, David W Knowles, Jitendra Malik
{"title":"使用金字塔上下文特征的体积语义分割。","authors":"Jonathan T Barron, Pablo Arbeláez, Soile V E Keränen, Mark D Biggin, David W Knowles, Jitendra Malik","doi":"10.1109/ICCV.2013.428","DOIUrl":null,"url":null,"abstract":"<p><p>We present an algorithm for the per-voxel semantic segmentation of a three-dimensional volume. At the core of our algorithm is a novel \"pyramid context\" feature, a descriptive representation designed such that exact per-voxel linear classification can be made extremely efficient. This feature not only allows for efficient semantic segmentation but enables other aspects of our algorithm, such as novel learned features and a stacked architecture that can reason about self-consistency. We demonstrate our technique on 3D fluorescence microscopy data of Drosophila embryos for which we are able to produce extremely accurate semantic segmentations in a matter of minutes, and for which other algorithms fail due to the size and high-dimensionality of the data, or due to the difficulty of the task.</p>","PeriodicalId":74564,"journal":{"name":"Proceedings. IEEE International Conference on Computer Vision","volume":"2013 ","pages":"3448-3455"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICCV.2013.428","citationCount":"15","resultStr":"{\"title\":\"Volumetric Semantic Segmentation using Pyramid Context Features.\",\"authors\":\"Jonathan T Barron, Pablo Arbeláez, Soile V E Keränen, Mark D Biggin, David W Knowles, Jitendra Malik\",\"doi\":\"10.1109/ICCV.2013.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an algorithm for the per-voxel semantic segmentation of a three-dimensional volume. At the core of our algorithm is a novel \\\"pyramid context\\\" feature, a descriptive representation designed such that exact per-voxel linear classification can be made extremely efficient. This feature not only allows for efficient semantic segmentation but enables other aspects of our algorithm, such as novel learned features and a stacked architecture that can reason about self-consistency. We demonstrate our technique on 3D fluorescence microscopy data of Drosophila embryos for which we are able to produce extremely accurate semantic segmentations in a matter of minutes, and for which other algorithms fail due to the size and high-dimensionality of the data, or due to the difficulty of the task.</p>\",\"PeriodicalId\":74564,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Vision\",\"volume\":\"2013 \",\"pages\":\"3448-3455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICCV.2013.428\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种三维体的逐体素语义分割算法。我们算法的核心是一个新颖的“金字塔上下文”特征,这是一个描述性的表示,可以使精确的每体素线性分类非常有效。这个特性不仅允许有效的语义分割,而且支持我们算法的其他方面,例如新的学习特征和可以对自一致性进行推理的堆叠架构。我们在果蝇胚胎的3D荧光显微镜数据上展示了我们的技术,我们能够在几分钟内产生非常准确的语义分割,并且由于数据的大小和高维,或者由于任务的难度,其他算法失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Volumetric Semantic Segmentation using Pyramid Context Features.

Volumetric Semantic Segmentation using Pyramid Context Features.

Volumetric Semantic Segmentation using Pyramid Context Features.

Volumetric Semantic Segmentation using Pyramid Context Features.

We present an algorithm for the per-voxel semantic segmentation of a three-dimensional volume. At the core of our algorithm is a novel "pyramid context" feature, a descriptive representation designed such that exact per-voxel linear classification can be made extremely efficient. This feature not only allows for efficient semantic segmentation but enables other aspects of our algorithm, such as novel learned features and a stacked architecture that can reason about self-consistency. We demonstrate our technique on 3D fluorescence microscopy data of Drosophila embryos for which we are able to produce extremely accurate semantic segmentations in a matter of minutes, and for which other algorithms fail due to the size and high-dimensionality of the data, or due to the difficulty of the task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信