{"title":"被子植物花中雌蕊形态与子房位置的相关性:发育和术语限制的作用。","authors":"D D Sokoloff","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Angiosperm gynoecium consists of elementary units, called carpels. These can be free (apocarpy) or united (coenocarpy, or syncarpy in a wide sense). One of the most complicate problems of evolutionary morphology of angiosperms is distinguishing monomerous and pseudomonomerous gynoecia. The former are assumed to be derived by reduction of carpel number in apocarpous gynoecia, the latter by reduction of gynoecia with united carpels. Pseudomonomerous gynoecia have one fertile carpel and more or less prominent traces of sterile carpel(s). In extreme cases of reduction, pseudomonomerous gynoecia are very similar to monomerous, even though the two types have completely different evolutionary histories. G.B. Kedrov (1969) proposed a new approach to resolving the issue. Using the fact of absence of polymerous free-carpellate gynoecia with inferior ovaries, he suggested that there is a constraint against epigyny in plants with free carpels. Therefore, in taxa with disputable morphological interpretations, the gynoecium should be treated as pseudomonomerous (and not monomerous) if the ovary is inferior. A critical review of the concept of G.B. Kedrov showed that his ideas would suggest re-interpretation of widely accepted views on gynoecium morphology in several key families of basal angiosperms. An alternative view is proposed, that for most important types of epigyny in angiosperms, a \"constraint\" for a combination of inferior ovary and apocarpy is due to definition of the term \"apocarpy\" only. There is no biological sense in this \"constraint\". Existence of two other morphogenetic constraints is proposed: (1) against development of a typical inferior ovary in monomerous gynoecia with conduplicate carpel and (2) against a radial (sectorial) fusion of individual carpels with stamens or perianth members without fusion of these groups into an entire structure. Possible biological nature of these constraints is discussed.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Correlations between gynoecium morphology and ovary position in angiosperm flowers: roles of developmental and terminological constraints].\",\"authors\":\"D D Sokoloff\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiosperm gynoecium consists of elementary units, called carpels. These can be free (apocarpy) or united (coenocarpy, or syncarpy in a wide sense). One of the most complicate problems of evolutionary morphology of angiosperms is distinguishing monomerous and pseudomonomerous gynoecia. The former are assumed to be derived by reduction of carpel number in apocarpous gynoecia, the latter by reduction of gynoecia with united carpels. Pseudomonomerous gynoecia have one fertile carpel and more or less prominent traces of sterile carpel(s). In extreme cases of reduction, pseudomonomerous gynoecia are very similar to monomerous, even though the two types have completely different evolutionary histories. G.B. Kedrov (1969) proposed a new approach to resolving the issue. Using the fact of absence of polymerous free-carpellate gynoecia with inferior ovaries, he suggested that there is a constraint against epigyny in plants with free carpels. Therefore, in taxa with disputable morphological interpretations, the gynoecium should be treated as pseudomonomerous (and not monomerous) if the ovary is inferior. A critical review of the concept of G.B. Kedrov showed that his ideas would suggest re-interpretation of widely accepted views on gynoecium morphology in several key families of basal angiosperms. An alternative view is proposed, that for most important types of epigyny in angiosperms, a \\\"constraint\\\" for a combination of inferior ovary and apocarpy is due to definition of the term \\\"apocarpy\\\" only. There is no biological sense in this \\\"constraint\\\". Existence of two other morphogenetic constraints is proposed: (1) against development of a typical inferior ovary in monomerous gynoecia with conduplicate carpel and (2) against a radial (sectorial) fusion of individual carpels with stamens or perianth members without fusion of these groups into an entire structure. Possible biological nature of these constraints is discussed.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Correlations between gynoecium morphology and ovary position in angiosperm flowers: roles of developmental and terminological constraints].
Angiosperm gynoecium consists of elementary units, called carpels. These can be free (apocarpy) or united (coenocarpy, or syncarpy in a wide sense). One of the most complicate problems of evolutionary morphology of angiosperms is distinguishing monomerous and pseudomonomerous gynoecia. The former are assumed to be derived by reduction of carpel number in apocarpous gynoecia, the latter by reduction of gynoecia with united carpels. Pseudomonomerous gynoecia have one fertile carpel and more or less prominent traces of sterile carpel(s). In extreme cases of reduction, pseudomonomerous gynoecia are very similar to monomerous, even though the two types have completely different evolutionary histories. G.B. Kedrov (1969) proposed a new approach to resolving the issue. Using the fact of absence of polymerous free-carpellate gynoecia with inferior ovaries, he suggested that there is a constraint against epigyny in plants with free carpels. Therefore, in taxa with disputable morphological interpretations, the gynoecium should be treated as pseudomonomerous (and not monomerous) if the ovary is inferior. A critical review of the concept of G.B. Kedrov showed that his ideas would suggest re-interpretation of widely accepted views on gynoecium morphology in several key families of basal angiosperms. An alternative view is proposed, that for most important types of epigyny in angiosperms, a "constraint" for a combination of inferior ovary and apocarpy is due to definition of the term "apocarpy" only. There is no biological sense in this "constraint". Existence of two other morphogenetic constraints is proposed: (1) against development of a typical inferior ovary in monomerous gynoecia with conduplicate carpel and (2) against a radial (sectorial) fusion of individual carpels with stamens or perianth members without fusion of these groups into an entire structure. Possible biological nature of these constraints is discussed.