SimConcept:简化生物医学中复合命名实体的混合方法。

Chih-Hsuan Wei, Robert Leaman, Zhiyong Lu
{"title":"SimConcept:简化生物医学中复合命名实体的混合方法。","authors":"Chih-Hsuan Wei, Robert Leaman, Zhiyong Lu","doi":"10.1145/2649387.2649420","DOIUrl":null,"url":null,"abstract":"<p><p>Many text-mining studies have focused on the issue of named entity recognition and normalization, especially in the field of biomedical natural language processing. However, entity recognition is a complicated and difficult task in biomedical text. One particular challenge is to identify and resolve composite named entities, where a single span refers to more than one concept(e.g., BRCA1/2). Most bioconcept recognition and normalization studies have either ignored this issue, used simple ad-hoc rules, or only handled coordination ellipsis, which is only one of the many types of composite mentions studied in this work. No systematic methods for simplifying composite mentions have been previously reported, making a robust approach greatly needed. To this end, we propose a hybrid approach by integrating a machine learning model with a pattern identification strategy to identify the antecedent and conjuncts regions of a concept mention, and then reassemble the composite mention using those identified regions. Our method, which we have named SimConcept, is the first method to systematically handle most types of composite mentions. Our method achieves high performance in identifying and resolving composite mentions for three fundamental biological entities: genes (89.29% in F-measure), diseases (85.52% in F-measure) and chemicals (84.04% in F-measure). Furthermore, our results show that, using our SimConcept method can subsequently help improve the performance of gene and disease concept recognition and normalization.</p>","PeriodicalId":72044,"journal":{"name":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384177/pdf/nihms673019.pdf","citationCount":"0","resultStr":"{\"title\":\"SimConcept: A Hybrid Approach for Simplifying Composite Named Entities in Biomedicine.\",\"authors\":\"Chih-Hsuan Wei, Robert Leaman, Zhiyong Lu\",\"doi\":\"10.1145/2649387.2649420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many text-mining studies have focused on the issue of named entity recognition and normalization, especially in the field of biomedical natural language processing. However, entity recognition is a complicated and difficult task in biomedical text. One particular challenge is to identify and resolve composite named entities, where a single span refers to more than one concept(e.g., BRCA1/2). Most bioconcept recognition and normalization studies have either ignored this issue, used simple ad-hoc rules, or only handled coordination ellipsis, which is only one of the many types of composite mentions studied in this work. No systematic methods for simplifying composite mentions have been previously reported, making a robust approach greatly needed. To this end, we propose a hybrid approach by integrating a machine learning model with a pattern identification strategy to identify the antecedent and conjuncts regions of a concept mention, and then reassemble the composite mention using those identified regions. Our method, which we have named SimConcept, is the first method to systematically handle most types of composite mentions. Our method achieves high performance in identifying and resolving composite mentions for three fundamental biological entities: genes (89.29% in F-measure), diseases (85.52% in F-measure) and chemicals (84.04% in F-measure). Furthermore, our results show that, using our SimConcept method can subsequently help improve the performance of gene and disease concept recognition and normalization.</p>\",\"PeriodicalId\":72044,\"journal\":{\"name\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384177/pdf/nihms673019.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2649387.2649420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2649387.2649420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多文本挖掘研究都关注命名实体识别和规范化问题,尤其是在生物医学自然语言处理领域。然而,在生物医学文本中,实体识别是一项复杂而艰巨的任务。一个特殊的挑战是识别和解决复合命名实体,即一个跨度指的是多个概念(如 BRCA1/2)。大多数生物概念识别和规范化研究要么忽略了这一问题,要么使用简单的临时规则,要么只处理了协调省略,而协调省略只是本文研究的多种复合提及类型之一。以前没有报道过简化复合提及的系统方法,因此非常需要一种稳健的方法。为此,我们提出了一种混合方法,将机器学习模型与模式识别策略相结合,以识别概念提及的先行词和连接词区域,然后使用这些识别出的区域重新组合复合提及。我们将这种方法命名为 SimConcept,它是第一种系统地处理大多数类型的复合提及的方法。我们的方法在识别和解决基因(F-measure 为 89.29%)、疾病(F-measure 为 85.52%)和化学物质(F-measure 为 84.04%)这三个基本生物实体的复合提及方面取得了很高的性能。此外,我们的结果表明,使用我们的 SimConcept 方法有助于提高基因和疾病概念识别和规范化的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SimConcept: A Hybrid Approach for Simplifying Composite Named Entities in Biomedicine.

SimConcept: A Hybrid Approach for Simplifying Composite Named Entities in Biomedicine.

Many text-mining studies have focused on the issue of named entity recognition and normalization, especially in the field of biomedical natural language processing. However, entity recognition is a complicated and difficult task in biomedical text. One particular challenge is to identify and resolve composite named entities, where a single span refers to more than one concept(e.g., BRCA1/2). Most bioconcept recognition and normalization studies have either ignored this issue, used simple ad-hoc rules, or only handled coordination ellipsis, which is only one of the many types of composite mentions studied in this work. No systematic methods for simplifying composite mentions have been previously reported, making a robust approach greatly needed. To this end, we propose a hybrid approach by integrating a machine learning model with a pattern identification strategy to identify the antecedent and conjuncts regions of a concept mention, and then reassemble the composite mention using those identified regions. Our method, which we have named SimConcept, is the first method to systematically handle most types of composite mentions. Our method achieves high performance in identifying and resolving composite mentions for three fundamental biological entities: genes (89.29% in F-measure), diseases (85.52% in F-measure) and chemicals (84.04% in F-measure). Furthermore, our results show that, using our SimConcept method can subsequently help improve the performance of gene and disease concept recognition and normalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信