{"title":"臂丛后束及其分支:解剖变异及临床意义。","authors":"Rakhi Rastogi, Virendra Budhiraja, Kshitij Bansal","doi":"10.5402/2013/501813","DOIUrl":null,"url":null,"abstract":"<p><p>Background. Knowledge of anatomical variations of posterior cord and its branches is important not only for the administration of anaesthetic blocks but also for surgical approaches to the neck, axilla, and upper arm. The present study aimed to record the prevalence of such variations with embryological explanation and clinical implication. Material and Method. 37 formalin-preserved cadavers, that is, 74 upper extremities from the Indian population, constituted the material for the study. Cadavers were dissected during routine anatomy classes for medical undergraduate. Dissection includes surgical incision in the axilla, followed by retraction of various muscles, to observe and record the formation and branching pattern of posterior cord of brachial plexus. Results. Posterior cord was formed by union of posterior division of C5 and C6 roots with posterior division of middle and lower trunk (there was no upper trunk) in 16.2% of upper extremities. Posterior cord of brachial plexus was present lateral to the second part of axillary artery in 18.9% of upper extremities. Axillary nerve was taking origin from posterior division of upper trunk in 10.8% upper extremities and thoracodorsal nerve arising from axillary nerve in 22.9% upper extremities. Conclusion. It is important to be aware of such variations while planning a surgery in the region of axilla as these nerves are more liable to be injured during surgical procedures. </p>","PeriodicalId":90876,"journal":{"name":"ISRN anatomy","volume":"2013 ","pages":"501813"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392958/pdf/","citationCount":"20","resultStr":"{\"title\":\"Posterior cord of brachial plexus and its branches: anatomical variations and clinical implication.\",\"authors\":\"Rakhi Rastogi, Virendra Budhiraja, Kshitij Bansal\",\"doi\":\"10.5402/2013/501813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Background. Knowledge of anatomical variations of posterior cord and its branches is important not only for the administration of anaesthetic blocks but also for surgical approaches to the neck, axilla, and upper arm. The present study aimed to record the prevalence of such variations with embryological explanation and clinical implication. Material and Method. 37 formalin-preserved cadavers, that is, 74 upper extremities from the Indian population, constituted the material for the study. Cadavers were dissected during routine anatomy classes for medical undergraduate. Dissection includes surgical incision in the axilla, followed by retraction of various muscles, to observe and record the formation and branching pattern of posterior cord of brachial plexus. Results. Posterior cord was formed by union of posterior division of C5 and C6 roots with posterior division of middle and lower trunk (there was no upper trunk) in 16.2% of upper extremities. Posterior cord of brachial plexus was present lateral to the second part of axillary artery in 18.9% of upper extremities. Axillary nerve was taking origin from posterior division of upper trunk in 10.8% upper extremities and thoracodorsal nerve arising from axillary nerve in 22.9% upper extremities. Conclusion. It is important to be aware of such variations while planning a surgery in the region of axilla as these nerves are more liable to be injured during surgical procedures. </p>\",\"PeriodicalId\":90876,\"journal\":{\"name\":\"ISRN anatomy\",\"volume\":\"2013 \",\"pages\":\"501813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392958/pdf/\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2013/501813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2013/501813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Posterior cord of brachial plexus and its branches: anatomical variations and clinical implication.
Background. Knowledge of anatomical variations of posterior cord and its branches is important not only for the administration of anaesthetic blocks but also for surgical approaches to the neck, axilla, and upper arm. The present study aimed to record the prevalence of such variations with embryological explanation and clinical implication. Material and Method. 37 formalin-preserved cadavers, that is, 74 upper extremities from the Indian population, constituted the material for the study. Cadavers were dissected during routine anatomy classes for medical undergraduate. Dissection includes surgical incision in the axilla, followed by retraction of various muscles, to observe and record the formation and branching pattern of posterior cord of brachial plexus. Results. Posterior cord was formed by union of posterior division of C5 and C6 roots with posterior division of middle and lower trunk (there was no upper trunk) in 16.2% of upper extremities. Posterior cord of brachial plexus was present lateral to the second part of axillary artery in 18.9% of upper extremities. Axillary nerve was taking origin from posterior division of upper trunk in 10.8% upper extremities and thoracodorsal nerve arising from axillary nerve in 22.9% upper extremities. Conclusion. It is important to be aware of such variations while planning a surgery in the region of axilla as these nerves are more liable to be injured during surgical procedures.