Joydeep Paul, Kshudiram Naskar, Sayan Chowdhury, Md Nur Alam, Tapati Chakraborti, Tripti De
{"title":"tlr4介导的MyD88信号激活诱导多诺瓦利什曼原虫感染的保护性免疫反应和IL-10下调","authors":"Joydeep Paul, Kshudiram Naskar, Sayan Chowdhury, Md Nur Alam, Tapati Chakraborti, Tripti De","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In visceral leishmaniasis, a fragmentary IL-12 driven type 1 immune response along with the expansion of IL-10 producing T-cells correlates with parasite burden and pathogenesis. Successful immunotherapy involves both suppression of IL-10 production and enhancement of IL-12 and nitric oxide (NO) production. As custodians of the innate immunity, the toll-like receptors (TLRs) constitute the first line of defense against invading pathogens. The TLR-signaling cascade initiated following innate recognition of microbes shapes the adaptive immune response. Whereas numerous studies have correlated parasite control to the adaptive response in Leishmania infection, growing body of evidence suggests that the activation of the innate immune response also plays a pivotal role in disease pathogenicity. In this study, using a TLR4 agonist, a Leishmania donovani (LD) derived 29 kDa β 1,4 galactose terminal glycoprotein (GP29), we demonstrated that the TLR adaptor myeloid differentiation primary response protein-88 (MyD88) was essential for optimal immunity following LD infection. Treatment of LD-infected cells with GP29 stimulated the production of IL-12 and NO while suppressing IL-10 production. Treatment of LD-infected cells with GP29 also induced the degradation of IKB and the nuclear translocation of NF-κB, as well as rapid phosphorylation of p38 MAPK and p54/56 JNK. Knockdown of TLR4 or MYD88 using siRNA showed reduced inflammatory response to GP29 in LD-infected cells. Biochemical inhibition of p38 MAPK, JNK or NF-κB, but not p42/44 ERK, reduced GP29-induced IL-12 and NO production in LD-infected cells. These results suggested a potential role for the TLR4-MyD88-IL-12 pathway to induce adaptive immune responses to LD infection that culminated in an effective control of intracellular parasite replication.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 6","pages":"531-41"},"PeriodicalIF":1.5000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TLR4-mediated activation of MyD88 signaling induces protective immune response and IL-10 down-regulation in Leishmania donovani infection.\",\"authors\":\"Joydeep Paul, Kshudiram Naskar, Sayan Chowdhury, Md Nur Alam, Tapati Chakraborti, Tripti De\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In visceral leishmaniasis, a fragmentary IL-12 driven type 1 immune response along with the expansion of IL-10 producing T-cells correlates with parasite burden and pathogenesis. Successful immunotherapy involves both suppression of IL-10 production and enhancement of IL-12 and nitric oxide (NO) production. As custodians of the innate immunity, the toll-like receptors (TLRs) constitute the first line of defense against invading pathogens. The TLR-signaling cascade initiated following innate recognition of microbes shapes the adaptive immune response. Whereas numerous studies have correlated parasite control to the adaptive response in Leishmania infection, growing body of evidence suggests that the activation of the innate immune response also plays a pivotal role in disease pathogenicity. In this study, using a TLR4 agonist, a Leishmania donovani (LD) derived 29 kDa β 1,4 galactose terminal glycoprotein (GP29), we demonstrated that the TLR adaptor myeloid differentiation primary response protein-88 (MyD88) was essential for optimal immunity following LD infection. Treatment of LD-infected cells with GP29 stimulated the production of IL-12 and NO while suppressing IL-10 production. Treatment of LD-infected cells with GP29 also induced the degradation of IKB and the nuclear translocation of NF-κB, as well as rapid phosphorylation of p38 MAPK and p54/56 JNK. Knockdown of TLR4 or MYD88 using siRNA showed reduced inflammatory response to GP29 in LD-infected cells. Biochemical inhibition of p38 MAPK, JNK or NF-κB, but not p42/44 ERK, reduced GP29-induced IL-12 and NO production in LD-infected cells. These results suggested a potential role for the TLR4-MyD88-IL-12 pathway to induce adaptive immune responses to LD infection that culminated in an effective control of intracellular parasite replication.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 6\",\"pages\":\"531-41\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TLR4-mediated activation of MyD88 signaling induces protective immune response and IL-10 down-regulation in Leishmania donovani infection.
In visceral leishmaniasis, a fragmentary IL-12 driven type 1 immune response along with the expansion of IL-10 producing T-cells correlates with parasite burden and pathogenesis. Successful immunotherapy involves both suppression of IL-10 production and enhancement of IL-12 and nitric oxide (NO) production. As custodians of the innate immunity, the toll-like receptors (TLRs) constitute the first line of defense against invading pathogens. The TLR-signaling cascade initiated following innate recognition of microbes shapes the adaptive immune response. Whereas numerous studies have correlated parasite control to the adaptive response in Leishmania infection, growing body of evidence suggests that the activation of the innate immune response also plays a pivotal role in disease pathogenicity. In this study, using a TLR4 agonist, a Leishmania donovani (LD) derived 29 kDa β 1,4 galactose terminal glycoprotein (GP29), we demonstrated that the TLR adaptor myeloid differentiation primary response protein-88 (MyD88) was essential for optimal immunity following LD infection. Treatment of LD-infected cells with GP29 stimulated the production of IL-12 and NO while suppressing IL-10 production. Treatment of LD-infected cells with GP29 also induced the degradation of IKB and the nuclear translocation of NF-κB, as well as rapid phosphorylation of p38 MAPK and p54/56 JNK. Knockdown of TLR4 or MYD88 using siRNA showed reduced inflammatory response to GP29 in LD-infected cells. Biochemical inhibition of p38 MAPK, JNK or NF-κB, but not p42/44 ERK, reduced GP29-induced IL-12 and NO production in LD-infected cells. These results suggested a potential role for the TLR4-MyD88-IL-12 pathway to induce adaptive immune responses to LD infection that culminated in an effective control of intracellular parasite replication.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.