{"title":"关于有界系数单位的线性组合和双基数展开。","authors":"Daniel Krenn, Jörg Thuswaldner, Volker Ziegler","doi":"10.1007/s00605-012-0443-4","DOIUrl":null,"url":null,"abstract":"<p><p>Let [Formula: see text] be the maximal order of a number field. Belcher showed in the 1970s that every algebraic integer in [Formula: see text] is the sum of pairwise distinct units, if the unit equation [Formula: see text] has a non-trivial solution [Formula: see text]. We generalize this result and give applications to signed double-base digit expansions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370826/pdf/","citationCount":"0","resultStr":"{\"title\":\"On linear combinations of units with bounded coefficients and double-base digit expansions.\",\"authors\":\"Daniel Krenn, Jörg Thuswaldner, Volker Ziegler\",\"doi\":\"10.1007/s00605-012-0443-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let [Formula: see text] be the maximal order of a number field. Belcher showed in the 1970s that every algebraic integer in [Formula: see text] is the sum of pairwise distinct units, if the unit equation [Formula: see text] has a non-trivial solution [Formula: see text]. We generalize this result and give applications to signed double-base digit expansions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-012-0443-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-012-0443-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
On linear combinations of units with bounded coefficients and double-base digit expansions.
Let [Formula: see text] be the maximal order of a number field. Belcher showed in the 1970s that every algebraic integer in [Formula: see text] is the sum of pairwise distinct units, if the unit equation [Formula: see text] has a non-trivial solution [Formula: see text]. We generalize this result and give applications to signed double-base digit expansions.