{"title":"辅助视野在目标导向行为中的作用","authors":"Veit Stuphorn","doi":"10.1016/j.jphysparis.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.</p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"109 1","pages":"Pages 118-128"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.002","citationCount":"24","resultStr":"{\"title\":\"The role of supplementary eye field in goal-directed behavior\",\"authors\":\"Veit Stuphorn\",\"doi\":\"10.1016/j.jphysparis.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.</p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"109 1\",\"pages\":\"Pages 118-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.002\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425715000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425715000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
The role of supplementary eye field in goal-directed behavior
The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.
期刊介绍:
Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.