辅助视野在目标导向行为中的作用

Q Medicine
Veit Stuphorn
{"title":"辅助视野在目标导向行为中的作用","authors":"Veit Stuphorn","doi":"10.1016/j.jphysparis.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.</p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"109 1","pages":"Pages 118-128"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.002","citationCount":"24","resultStr":"{\"title\":\"The role of supplementary eye field in goal-directed behavior\",\"authors\":\"Veit Stuphorn\",\"doi\":\"10.1016/j.jphysparis.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.</p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"109 1\",\"pages\":\"Pages 118-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.002\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425715000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425715000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 24

摘要

内侧额叶皮层被认为在行为的控制、监测和选择中发挥作用。辅助视野(SEF)是位于内侧额叶皮层内的一个皮层区域,参与眼球运动的调节。猕猴SEF的神经生理学研究系统地探讨了SEF在各种行为控制和监测功能中的作用。抑制控制研究表明,SEF神经元不直接参与眼球运动的启动。相反,最近基于价值的决策研究表明,SEF通过代表所有当前可能的动眼肌行为的上下文相关动作值来参与眼球运动的控制。SEF中的这些动作值信号将有助于指导更多初级动眼区的活动分布,从而指导人们做出行为最佳选择。SEF也不参与对任务要求突然变化的快速、抑制性眼球运动的控制。相反,它参与动眼肌兴奋性的长期调节,以调节速度-准确性的权衡。在SEF中发现的与上下文相关的控制信号(包括动作值信号)必须被学习并不断调整以响应环境的变化。这可能是SEF中大量不同反应监测和评价信号的作用。总之,SEF在目标导向行为中的整体功能似乎是学习情境依赖规则,从而预测不同眼球运动的可能后果。这个动作值信号图可以用来选择最能实现智能体当前长期目标的眼球运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The role of supplementary eye field in goal-directed behavior

The role of supplementary eye field in goal-directed behavior

The role of supplementary eye field in goal-directed behavior

The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-Paris
Journal of Physiology-Paris 医学-神经科学
CiteScore
2.02
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信