在二级结构预测中寻找RNA序列最优分割的动态规划算法。

Abel Licon, Michela Taufer, Ming-Ying Leung, Kyle L Johnson
{"title":"在二级结构预测中寻找RNA序列最优分割的动态规划算法。","authors":"Abel Licon,&nbsp;Michela Taufer,&nbsp;Ming-Ying Leung,&nbsp;Kyle L Johnson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a dynamic programming algorithm that runs in polynomial time and allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into segments (chunks). The secondary structure of each chunk is predicted independently, then combined with the structures predicted for the other chunks, to generate a complete secondary structure prediction that is thus a combination of local energy minima. The proposed approach not only is more efficient and accurate than other traditionally used methods that are based on global energy minimizations, but it also allows scientists to overcome computing and storage constraints when trying to predict the secondary structure of long RNA sequences.</p>","PeriodicalId":90776,"journal":{"name":"2nd International Conference on Bioinformatics and Computational Biology 2010, (BICoB-2010), Honolulu, Hawaii, USA, 24-26 March 2010. International Conference on Bioinformatics and Computational Biology (2nd : 2010 : Honolulu, Hawaii)","volume":"2010 ","pages":"165-170"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335647/pdf/nihms274817.pdf","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.\",\"authors\":\"Abel Licon,&nbsp;Michela Taufer,&nbsp;Ming-Ying Leung,&nbsp;Kyle L Johnson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present a dynamic programming algorithm that runs in polynomial time and allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into segments (chunks). The secondary structure of each chunk is predicted independently, then combined with the structures predicted for the other chunks, to generate a complete secondary structure prediction that is thus a combination of local energy minima. The proposed approach not only is more efficient and accurate than other traditionally used methods that are based on global energy minimizations, but it also allows scientists to overcome computing and storage constraints when trying to predict the secondary structure of long RNA sequences.</p>\",\"PeriodicalId\":90776,\"journal\":{\"name\":\"2nd International Conference on Bioinformatics and Computational Biology 2010, (BICoB-2010), Honolulu, Hawaii, USA, 24-26 March 2010. International Conference on Bioinformatics and Computational Biology (2nd : 2010 : Honolulu, Hawaii)\",\"volume\":\"2010 \",\"pages\":\"165-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335647/pdf/nihms274817.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International Conference on Bioinformatics and Computational Biology 2010, (BICoB-2010), Honolulu, Hawaii, USA, 24-26 March 2010. International Conference on Bioinformatics and Computational Biology (2nd : 2010 : Honolulu, Hawaii)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Conference on Bioinformatics and Computational Biology 2010, (BICoB-2010), Honolulu, Hawaii, USA, 24-26 March 2010. International Conference on Bioinformatics and Computational Biology (2nd : 2010 : Honolulu, Hawaii)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种动态规划算法,该算法在多项式时间内运行,并允许我们实现长RNA序列的最佳,非重叠分割成片段(块)。每个块的二级结构是独立预测的,然后与其他块的预测结构相结合,从而产生一个完整的二级结构预测,即局部能量最小值的组合。所提出的方法不仅比其他基于全局能量最小化的传统方法更有效和准确,而且还允许科学家在试图预测长RNA序列的二级结构时克服计算和存储限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

In this paper, we present a dynamic programming algorithm that runs in polynomial time and allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into segments (chunks). The secondary structure of each chunk is predicted independently, then combined with the structures predicted for the other chunks, to generate a complete secondary structure prediction that is thus a combination of local energy minima. The proposed approach not only is more efficient and accurate than other traditionally used methods that are based on global energy minimizations, but it also allows scientists to overcome computing and storage constraints when trying to predict the secondary structure of long RNA sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信