用MiST评分大规模亲和纯化质谱数据集

Q1 Biochemistry, Genetics and Molecular Biology
Erik Verschueren, John Von Dollen, Peter Cimermancic, Natali Gulbahce, Andrej Sali, Nevan J. Krogan
{"title":"用MiST评分大规模亲和纯化质谱数据集","authors":"Erik Verschueren,&nbsp;John Von Dollen,&nbsp;Peter Cimermancic,&nbsp;Natali Gulbahce,&nbsp;Andrej Sali,&nbsp;Nevan J. Krogan","doi":"10.1002/0471250953.bi0819s49","DOIUrl":null,"url":null,"abstract":"<p>High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. © 2015 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471250953.bi0819s49","citationCount":"57","resultStr":"{\"title\":\"Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST\",\"authors\":\"Erik Verschueren,&nbsp;John Von Dollen,&nbsp;Peter Cimermancic,&nbsp;Natali Gulbahce,&nbsp;Andrej Sali,&nbsp;Nevan J. Krogan\",\"doi\":\"10.1002/0471250953.bi0819s49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. © 2015 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/0471250953.bi0819s49\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0819s49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0819s49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 57

摘要

高通量亲和纯化质谱(AP-MS)实验可以鉴定大量蛋白质相互作用,但这些相互作用中只有一小部分具有生物学相关性。在这里,我们描述了一种综合的计算策略来处理原始AP-MS数据,执行质量控制,并在一组使用质谱相互作用统计(MiST)的重复AP-MS实验中优先考虑生物学相关的诱饵-猎物对。MiST分数是猎物数量(丰度)、重复实验中丰度不变性(再现性)和猎物相对于其他诱饵的独特性(特异性)的线性组合。我们描述了如何在R环境中运行完整的MiST分析管道,并讨论了一些可配置的选项,这些选项允许外行用户将任何大规模AP-MS数据转换为可解释的、生物相关的蛋白质-蛋白质相互作用网络。©2015 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST

Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST

Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST

Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST

High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. © 2015 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信