使用云计算大数据方法的电子健康记录数据预测运动神经元疾病进展的严重程度。

Kyung Dae Ko, Tarek El-Ghazawi, Dongkyu Kim, Hiroki Morizono
{"title":"使用云计算大数据方法的电子健康记录数据预测运动神经元疾病进展的严重程度。","authors":"Kyung Dae Ko,&nbsp;Tarek El-Ghazawi,&nbsp;Dongkyu Kim,&nbsp;Hiroki Morizono","doi":"10.1109/CIBCB.2014.6845506","DOIUrl":null,"url":null,"abstract":"<p><p>Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.</p>","PeriodicalId":89148,"journal":{"name":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2014 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIBCB.2014.6845506","citationCount":"25","resultStr":"{\"title\":\"Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.\",\"authors\":\"Kyung Dae Ko,&nbsp;Tarek El-Ghazawi,&nbsp;Dongkyu Kim,&nbsp;Hiroki Morizono\",\"doi\":\"10.1109/CIBCB.2014.6845506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.</p>\",\"PeriodicalId\":89148,\"journal\":{\"name\":\"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"2014 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CIBCB.2014.6845506\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2014.6845506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2014.6845506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

运动神经元疾病(mnd)是一类以运动神经元损伤为主的进行性神经系统疾病。准确的诊断对于老年痴呆症患者的治疗非常重要,因为老年痴呆症没有标准的治疗方法。然而,在这类疾病中,假阳性和假阴性诊断的比率仍然很高。就肌萎缩性侧索硬化症(ALS)而言,目前的估计表明10%的诊断为假阳性,而44%的诊断为假阴性。在这项研究中,我们开发了一种新的方法来分析患者医疗记录中的特定医疗信息,以预测运动神经元疾病的进展。我们使用Hbase和Apache Mahout的随机森林分类器对ALS临床试验数据库(PRO-ACT)站点提供的病历进行分析,预测ALS进展的准确率达到66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信