Guadalupe Muñoz-Arenas, Francisco Paz-Bermúdez, Ana Báez-Cordero, René Caballero-Florán, Brenda González-Hernández, Benjamín Florán, I Daniel Limón
{"title":"大麻素CB1受体的激活和与D2受体的共激活可调节苍白球gaba能神经传递并增加运动不对称性。","authors":"Guadalupe Muñoz-Arenas, Francisco Paz-Bermúdez, Ana Báez-Cordero, René Caballero-Florán, Brenda González-Hernández, Benjamín Florán, I Daniel Limón","doi":"10.1002/syn.21796","DOIUrl":null,"url":null,"abstract":"<p><p>The cannabinoid CB1 (CB1R) and dopaminergic D2 (D2R) receptors modify GABAergic transmission in the globus pallidus. Although dopaminergic denervation produces changes in the expression and supersensitization of these receptors, the consequences of these changes on GABAergic neurotransmission are unknown. The aim of this study was to show the effects of CB1R and D2R activation and coactivation on the uptake and release of [(3) H]GABA in the globus pallidus of hemiparkinsonian rats as well as their effects on motor behavior. The activation of CB1R blocked GABA uptake and decreased GABA release in the globus pallidus in the dopamine denervated side, whereas the co-activation of CB1R-D2R increased GABA release and had no effect on GABA uptake. A microinjection of the CB1R agonist ACEA into the globus pallidus ipsilaterally to a 6-OHDA lesion potentiated turning behavior that was induced by methamphetamine. However, a microinjection of the D2R agonist quinpirole did not modify this behavior, and a microinjection of a mixture of CB1R and D2R agonists significantly potentiated turning behavior. The behavioral effects produced after the activation of the CB1R and the co-activation of CB1R and D2R can be explained by increased GABAergic neurotransmission produced by a block of GABA uptake and an increase in the release of GABA in the globus pallidus, respectively.</p>","PeriodicalId":118978,"journal":{"name":"Synapse (New York, N.y.)","volume":" ","pages":"103-14"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/syn.21796","citationCount":"23","resultStr":"{\"title\":\"Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry.\",\"authors\":\"Guadalupe Muñoz-Arenas, Francisco Paz-Bermúdez, Ana Báez-Cordero, René Caballero-Florán, Brenda González-Hernández, Benjamín Florán, I Daniel Limón\",\"doi\":\"10.1002/syn.21796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cannabinoid CB1 (CB1R) and dopaminergic D2 (D2R) receptors modify GABAergic transmission in the globus pallidus. Although dopaminergic denervation produces changes in the expression and supersensitization of these receptors, the consequences of these changes on GABAergic neurotransmission are unknown. The aim of this study was to show the effects of CB1R and D2R activation and coactivation on the uptake and release of [(3) H]GABA in the globus pallidus of hemiparkinsonian rats as well as their effects on motor behavior. The activation of CB1R blocked GABA uptake and decreased GABA release in the globus pallidus in the dopamine denervated side, whereas the co-activation of CB1R-D2R increased GABA release and had no effect on GABA uptake. A microinjection of the CB1R agonist ACEA into the globus pallidus ipsilaterally to a 6-OHDA lesion potentiated turning behavior that was induced by methamphetamine. However, a microinjection of the D2R agonist quinpirole did not modify this behavior, and a microinjection of a mixture of CB1R and D2R agonists significantly potentiated turning behavior. The behavioral effects produced after the activation of the CB1R and the co-activation of CB1R and D2R can be explained by increased GABAergic neurotransmission produced by a block of GABA uptake and an increase in the release of GABA in the globus pallidus, respectively.</p>\",\"PeriodicalId\":118978,\"journal\":{\"name\":\"Synapse (New York, N.y.)\",\"volume\":\" \",\"pages\":\"103-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/syn.21796\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synapse (New York, N.y.)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/syn.21796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse (New York, N.y.)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.21796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry.
The cannabinoid CB1 (CB1R) and dopaminergic D2 (D2R) receptors modify GABAergic transmission in the globus pallidus. Although dopaminergic denervation produces changes in the expression and supersensitization of these receptors, the consequences of these changes on GABAergic neurotransmission are unknown. The aim of this study was to show the effects of CB1R and D2R activation and coactivation on the uptake and release of [(3) H]GABA in the globus pallidus of hemiparkinsonian rats as well as their effects on motor behavior. The activation of CB1R blocked GABA uptake and decreased GABA release in the globus pallidus in the dopamine denervated side, whereas the co-activation of CB1R-D2R increased GABA release and had no effect on GABA uptake. A microinjection of the CB1R agonist ACEA into the globus pallidus ipsilaterally to a 6-OHDA lesion potentiated turning behavior that was induced by methamphetamine. However, a microinjection of the D2R agonist quinpirole did not modify this behavior, and a microinjection of a mixture of CB1R and D2R agonists significantly potentiated turning behavior. The behavioral effects produced after the activation of the CB1R and the co-activation of CB1R and D2R can be explained by increased GABAergic neurotransmission produced by a block of GABA uptake and an increase in the release of GABA in the globus pallidus, respectively.