用于估计解剖学纵向变化的混合效应形状模型。

Manasi Datar, Prasanna Muralidharan, Abhishek Kumar, Sylvain Gouttard, Joseph Piven, Guido Gerig, Ross Whitaker, P Thomas Fletcher
{"title":"用于估计解剖学纵向变化的混合效应形状模型。","authors":"Manasi Datar,&nbsp;Prasanna Muralidharan,&nbsp;Abhishek Kumar,&nbsp;Sylvain Gouttard,&nbsp;Joseph Piven,&nbsp;Guido Gerig,&nbsp;Ross Whitaker,&nbsp;P Thomas Fletcher","doi":"10.1007/978-3-642-33555-6_7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a new method for longitudinal shape analysis that fits a linear mixed-effects model, while simultaneously optimizing correspondences on a set of anatomical shapes. Shape changes are modeled in a hierarchical fashion, with the global population trend as a fixed effect and individual trends as random effects. The statistical significance of the estimated trends are evaluated using specifically designed permutation tests. We also develop a permutation test based on the Hotelling <i>T</i><sup>2</sup> statistic to compare the average shapes trends between two populations. We demonstrate the benefits of our method on a synthetic example of longitudinal tori and data from a developmental neuroimaging study.</p>","PeriodicalId":90731,"journal":{"name":"Spatio-temporal image analysis for longitudinal and time-series image data : Second International Workshop, STIA 2012, held in conjunction with MICCAI 2012, Nice, France, October 1, 2012, proceedings. STIA (Conference) (2nd : 2012 : Nic...","volume":"7570 ","pages":"76-87"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-33555-6_7","citationCount":"18","resultStr":"{\"title\":\"Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy.\",\"authors\":\"Manasi Datar,&nbsp;Prasanna Muralidharan,&nbsp;Abhishek Kumar,&nbsp;Sylvain Gouttard,&nbsp;Joseph Piven,&nbsp;Guido Gerig,&nbsp;Ross Whitaker,&nbsp;P Thomas Fletcher\",\"doi\":\"10.1007/978-3-642-33555-6_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a new method for longitudinal shape analysis that fits a linear mixed-effects model, while simultaneously optimizing correspondences on a set of anatomical shapes. Shape changes are modeled in a hierarchical fashion, with the global population trend as a fixed effect and individual trends as random effects. The statistical significance of the estimated trends are evaluated using specifically designed permutation tests. We also develop a permutation test based on the Hotelling <i>T</i><sup>2</sup> statistic to compare the average shapes trends between two populations. We demonstrate the benefits of our method on a synthetic example of longitudinal tori and data from a developmental neuroimaging study.</p>\",\"PeriodicalId\":90731,\"journal\":{\"name\":\"Spatio-temporal image analysis for longitudinal and time-series image data : Second International Workshop, STIA 2012, held in conjunction with MICCAI 2012, Nice, France, October 1, 2012, proceedings. STIA (Conference) (2nd : 2012 : Nic...\",\"volume\":\"7570 \",\"pages\":\"76-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-33555-6_7\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatio-temporal image analysis for longitudinal and time-series image data : Second International Workshop, STIA 2012, held in conjunction with MICCAI 2012, Nice, France, October 1, 2012, proceedings. STIA (Conference) (2nd : 2012 : Nic...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-33555-6_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatio-temporal image analysis for longitudinal and time-series image data : Second International Workshop, STIA 2012, held in conjunction with MICCAI 2012, Nice, France, October 1, 2012, proceedings. STIA (Conference) (2nd : 2012 : Nic...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-33555-6_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提出了一种新的纵向形状分析方法,该方法适合线性混合效应模型,同时优化了一组解剖形状的对应关系。形状变化以分层方式建模,全球人口趋势是固定效应,个体趋势是随机效应。使用专门设计的排列检验评估估计趋势的统计显著性。我们还开发了基于Hotelling T2统计量的排列检验,以比较两个种群之间的平均形状趋势。我们在纵向环面和发育神经影像学研究数据的综合例子上展示了我们的方法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy.

In this paper, we propose a new method for longitudinal shape analysis that fits a linear mixed-effects model, while simultaneously optimizing correspondences on a set of anatomical shapes. Shape changes are modeled in a hierarchical fashion, with the global population trend as a fixed effect and individual trends as random effects. The statistical significance of the estimated trends are evaluated using specifically designed permutation tests. We also develop a permutation test based on the Hotelling T2 statistic to compare the average shapes trends between two populations. We demonstrate the benefits of our method on a synthetic example of longitudinal tori and data from a developmental neuroimaging study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信