亚表面激光雕刻dMiCE探测器的共光接口。

William C J Hunter, Robert S Miyaoka, Lawrence MacDonald, Wendy McDougald, Thomas K Lewellen
{"title":"亚表面激光雕刻dMiCE探测器的共光接口。","authors":"William C J Hunter,&nbsp;Robert S Miyaoka,&nbsp;Lawrence MacDonald,&nbsp;Wendy McDougald,&nbsp;Thomas K Lewellen","doi":"10.1109/NSSMIC.2013.6829407","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2013 ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2013.6829407","citationCount":"0","resultStr":"{\"title\":\"Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.\",\"authors\":\"William C J Hunter,&nbsp;Robert S Miyaoka,&nbsp;Lawrence MacDonald,&nbsp;Wendy McDougald,&nbsp;Thomas K Lewellen\",\"doi\":\"10.1109/NSSMIC.2013.6829407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"2013 \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NSSMIC.2013.6829407\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们之前已经报道过dMiCE,这是一种在一对离散晶体中通过编码光共享属性作为该晶体-元素对界面深度的函数来解决深度或相互作用(DOI)的方法。这种方法面临的挑战是对晶体对进行界面处理的成本和可重复性。在这项工作中,我们报告了我们使用亚表面激光雕刻(SSLE)作为在dMiCE探测器中形成这种深度依赖界面的手段的初步结果。使用剩余的第一代SSLE系统在1.4 × 2.9 × 20 mm × 3 LYSO晶体的两半之间的边界处创建了100微米厚的部分反射层。这些配对晶体元素的边界位于两个来自滨松的3毫米宽的盖格-迈勒雪崩光电二极管之间。这两个光电探测器的响应是在511 kev的光子系综上获得的,这些光子系综在一个晶体元件的固定深度上被校准相互作用。然后改变相互作用位置以测量探测器响应作为深度的函数,然后将其用于最大似然位置事件。尽管使用了次优的SSLE处理,我们发现正面读出的平均DOI分辨率为3.4 mm,背面读出的平均DOI分辨率为3.9 mm。我们期望通过优化SSLE过程和模式可以显著提高DOI分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.

Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.

Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.

We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信