基于可扩展gpu的光线引导体绘制分析。

Thomas Fogal, Alexander Schiewe, Jens Krüger
{"title":"基于可扩展gpu的光线引导体绘制分析。","authors":"Thomas Fogal,&nbsp;Alexander Schiewe,&nbsp;Jens Krüger","doi":"10.1109/LDAV.2013.6675157","DOIUrl":null,"url":null,"abstract":"<p><p>Volume rendering continues to be a critical method for analyzing large-scale scalar fields, in disciplines as diverse as biomedical engineering and computational fluid dynamics. Commodity desktop hardware has struggled to keep pace with data size increases, challenging modern visualization software to deliver responsive interactions for <i>O</i>(<i>N</i><sup>3</sup>) algorithms such as volume rendering. We target the data type common in these domains: regularly-structured data. In this work, we demonstrate that the major limitation of most volume rendering approaches is their inability to switch the data sampling rate (and thus data size) quickly. Using a volume renderer inspired by recent work, we demonstrate that the actual amount of visualizable data for a scene is typically bound <i>considerably</i> lower than the memory available on a commodity GPU. Our instrumented renderer is used to investigate design decisions typically swept under the rug in volume rendering literature. The renderer is freely available, with binaries for all major platforms as well as full source code, to encourage reproduction and comparison with future research.</p>","PeriodicalId":90700,"journal":{"name":"Proceedings. IEEE Symposium on Large-Scale Data Analysis and Visualization","volume":"2013 ","pages":"43-51"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LDAV.2013.6675157","citationCount":"60","resultStr":"{\"title\":\"An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.\",\"authors\":\"Thomas Fogal,&nbsp;Alexander Schiewe,&nbsp;Jens Krüger\",\"doi\":\"10.1109/LDAV.2013.6675157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volume rendering continues to be a critical method for analyzing large-scale scalar fields, in disciplines as diverse as biomedical engineering and computational fluid dynamics. Commodity desktop hardware has struggled to keep pace with data size increases, challenging modern visualization software to deliver responsive interactions for <i>O</i>(<i>N</i><sup>3</sup>) algorithms such as volume rendering. We target the data type common in these domains: regularly-structured data. In this work, we demonstrate that the major limitation of most volume rendering approaches is their inability to switch the data sampling rate (and thus data size) quickly. Using a volume renderer inspired by recent work, we demonstrate that the actual amount of visualizable data for a scene is typically bound <i>considerably</i> lower than the memory available on a commodity GPU. Our instrumented renderer is used to investigate design decisions typically swept under the rug in volume rendering literature. The renderer is freely available, with binaries for all major platforms as well as full source code, to encourage reproduction and comparison with future research.</p>\",\"PeriodicalId\":90700,\"journal\":{\"name\":\"Proceedings. IEEE Symposium on Large-Scale Data Analysis and Visualization\",\"volume\":\"2013 \",\"pages\":\"43-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LDAV.2013.6675157\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Symposium on Large-Scale Data Analysis and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV.2013.6675157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Symposium on Large-Scale Data Analysis and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV.2013.6675157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

体绘制仍然是分析大规模标量场的关键方法,在生物医学工程和计算流体动力学等多种学科中都是如此。商用桌面硬件一直在努力跟上数据量增长的步伐,这对现代可视化软件为0 (N3)算法(如体绘制)提供响应性交互提出了挑战。我们的目标是这些领域中常见的数据类型:规则结构化数据。在这项工作中,我们证明了大多数体绘制方法的主要限制是它们无法快速切换数据采样率(因此数据大小)。使用受最近工作启发的体积渲染器,我们证明了场景的实际可视化数据量通常比商品GPU上可用的内存低得多。我们的仪器渲染器用于研究通常在体积渲染文献中被忽视的设计决策。渲染器是免费提供的,包括所有主要平台的二进制文件以及完整的源代码,以鼓励复制和比较未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.

An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.

An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.

An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.

Volume rendering continues to be a critical method for analyzing large-scale scalar fields, in disciplines as diverse as biomedical engineering and computational fluid dynamics. Commodity desktop hardware has struggled to keep pace with data size increases, challenging modern visualization software to deliver responsive interactions for O(N3) algorithms such as volume rendering. We target the data type common in these domains: regularly-structured data. In this work, we demonstrate that the major limitation of most volume rendering approaches is their inability to switch the data sampling rate (and thus data size) quickly. Using a volume renderer inspired by recent work, we demonstrate that the actual amount of visualizable data for a scene is typically bound considerably lower than the memory available on a commodity GPU. Our instrumented renderer is used to investigate design decisions typically swept under the rug in volume rendering literature. The renderer is freely available, with binaries for all major platforms as well as full source code, to encourage reproduction and comparison with future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信