从快速数据到高可信度的变体调用:基因组分析工具包最佳实践管道

Q1 Biochemistry, Genetics and Molecular Biology
Geraldine A. Van der Auwera, Mauricio O. Carneiro, Christopher Hartl, Ryan Poplin, Guillermo del Angel, Ami Levy-Moonshine, Tadeusz Jordan, Khalid Shakir, David Roazen, Joel Thibault, Eric Banks, Kiran V. Garimella, David Altshuler, Stacey Gabriel, Mark A. DePristo
{"title":"从快速数据到高可信度的变体调用:基因组分析工具包最佳实践管道","authors":"Geraldine A. Van der Auwera,&nbsp;Mauricio O. Carneiro,&nbsp;Christopher Hartl,&nbsp;Ryan Poplin,&nbsp;Guillermo del Angel,&nbsp;Ami Levy-Moonshine,&nbsp;Tadeusz Jordan,&nbsp;Khalid Shakir,&nbsp;David Roazen,&nbsp;Joel Thibault,&nbsp;Eric Banks,&nbsp;Kiran V. Garimella,&nbsp;David Altshuler,&nbsp;Stacey Gabriel,&nbsp;Mark A. DePristo","doi":"10.1002/0471250953.bi1110s43","DOIUrl":null,"url":null,"abstract":"<p>This unit describes how to use BWA and the Genome Analysis Toolkit (GATK) to map genome sequencing data to a reference and produce high-quality variant calls that can be used in downstream analyses. The complete workflow includes the core NGS data-processing steps that are necessary to make the raw data suitable for analysis by the GATK, as well as the key methods involved in variant discovery using the GATK. <i>Curr. Protoc. Bioinform</i>. 43:11.10.1-11.10.33. © 2013 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471250953.bi1110s43","citationCount":"5158","resultStr":"{\"title\":\"From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline\",\"authors\":\"Geraldine A. Van der Auwera,&nbsp;Mauricio O. Carneiro,&nbsp;Christopher Hartl,&nbsp;Ryan Poplin,&nbsp;Guillermo del Angel,&nbsp;Ami Levy-Moonshine,&nbsp;Tadeusz Jordan,&nbsp;Khalid Shakir,&nbsp;David Roazen,&nbsp;Joel Thibault,&nbsp;Eric Banks,&nbsp;Kiran V. Garimella,&nbsp;David Altshuler,&nbsp;Stacey Gabriel,&nbsp;Mark A. DePristo\",\"doi\":\"10.1002/0471250953.bi1110s43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This unit describes how to use BWA and the Genome Analysis Toolkit (GATK) to map genome sequencing data to a reference and produce high-quality variant calls that can be used in downstream analyses. The complete workflow includes the core NGS data-processing steps that are necessary to make the raw data suitable for analysis by the GATK, as well as the key methods involved in variant discovery using the GATK. <i>Curr. Protoc. Bioinform</i>. 43:11.10.1-11.10.33. © 2013 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/0471250953.bi1110s43\",\"citationCount\":\"5158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1110s43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1110s43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5158

摘要

本单元描述了如何使用BWA和基因组分析工具包(GATK)将基因组测序数据映射到参考,并产生可用于下游分析的高质量变体调用。完整的工作流程包括使原始数据适合GATK分析所必需的核心NGS数据处理步骤,以及使用GATK发现变体所涉及的关键方法。咕咕叫。Protoc。Bioinform 43:11.10.1-11.10.33。©2013 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline

From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline

This unit describes how to use BWA and the Genome Analysis Toolkit (GATK) to map genome sequencing data to a reference and produce high-quality variant calls that can be used in downstream analyses. The complete workflow includes the core NGS data-processing steps that are necessary to make the raw data suitable for analysis by the GATK, as well as the key methods involved in variant discovery using the GATK. Curr. Protoc. Bioinform. 43:11.10.1-11.10.33. © 2013 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信