Jin H Kim, Dong-Won Lee, Myeong H Jung, Hyun-Seop Cho, Dae-Hong Jeon, Se-Ho Chang, Dong Jun Park
{"title":"巨噬细胞耗竭可改善甘油诱导的小鼠急性肾损伤。","authors":"Jin H Kim, Dong-Won Lee, Myeong H Jung, Hyun-Seop Cho, Dae-Hong Jeon, Se-Ho Chang, Dong Jun Park","doi":"10.1159/000365851","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study was conducted to elucidate the role of renal macrophages in the development of acute kidney injury (AKI) in a glycerol (Gly)-induced rhabdomyolysis mouse model.</p><p><strong>Methods: </strong>The experimental model of rhabdomyolysis requires injecting 50% Gly (10 ml/kg) intramuscularly into mice. Control mice were injected into the tail vein with the liposomal vehicle. Liposome-encapsulated clodronate (LEC)-only mice were injected with LEC. Gly-only mice were injected with Gly into a hind limb. LEC+Gly-treated mice were injected intravenously with 100 μl of LEC 24 h prior to Gly injection. Mice were sacrificed 24 h after Gly injection.</p><p><strong>Results: </strong>Gly injection increased the serum creatinine level, and induced tubular damage. Renal CD45(+)CD11b(+)Ly6c(+) or CD45(+)CD11b(+)Ly6c(+)F4/80(+) macrophages were decreased by pretreatment with LEC in both normal and injured kidneys. Macrophage depletion prevented Gly-induced apoptotic death of tubular epithelial cells by decreasing caspase-9, ERK and p53, while increasing Bcl-2 expression. Expression of the inflammatory mediators NF-κB, MCP-1, ICAM-1, iNOS and COX-2 were also decreased with LEC pretreatment of mice injected with Gly.</p><p><strong>Conclusion: </strong>These results support the hypothesis that depletion of macrophages prevents renal dysfunction by abrogating apoptosis and attenuating inflammation during AKI.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"128 1-2","pages":"21-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000365851","citationCount":"31","resultStr":"{\"title\":\"Macrophage depletion ameliorates glycerol-induced acute kidney injury in mice.\",\"authors\":\"Jin H Kim, Dong-Won Lee, Myeong H Jung, Hyun-Seop Cho, Dae-Hong Jeon, Se-Ho Chang, Dong Jun Park\",\"doi\":\"10.1159/000365851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study was conducted to elucidate the role of renal macrophages in the development of acute kidney injury (AKI) in a glycerol (Gly)-induced rhabdomyolysis mouse model.</p><p><strong>Methods: </strong>The experimental model of rhabdomyolysis requires injecting 50% Gly (10 ml/kg) intramuscularly into mice. Control mice were injected into the tail vein with the liposomal vehicle. Liposome-encapsulated clodronate (LEC)-only mice were injected with LEC. Gly-only mice were injected with Gly into a hind limb. LEC+Gly-treated mice were injected intravenously with 100 μl of LEC 24 h prior to Gly injection. Mice were sacrificed 24 h after Gly injection.</p><p><strong>Results: </strong>Gly injection increased the serum creatinine level, and induced tubular damage. Renal CD45(+)CD11b(+)Ly6c(+) or CD45(+)CD11b(+)Ly6c(+)F4/80(+) macrophages were decreased by pretreatment with LEC in both normal and injured kidneys. Macrophage depletion prevented Gly-induced apoptotic death of tubular epithelial cells by decreasing caspase-9, ERK and p53, while increasing Bcl-2 expression. Expression of the inflammatory mediators NF-κB, MCP-1, ICAM-1, iNOS and COX-2 were also decreased with LEC pretreatment of mice injected with Gly.</p><p><strong>Conclusion: </strong>These results support the hypothesis that depletion of macrophages prevents renal dysfunction by abrogating apoptosis and attenuating inflammation during AKI.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"128 1-2\",\"pages\":\"21-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000365851\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000365851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000365851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/11/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Macrophage depletion ameliorates glycerol-induced acute kidney injury in mice.
Background: This study was conducted to elucidate the role of renal macrophages in the development of acute kidney injury (AKI) in a glycerol (Gly)-induced rhabdomyolysis mouse model.
Methods: The experimental model of rhabdomyolysis requires injecting 50% Gly (10 ml/kg) intramuscularly into mice. Control mice were injected into the tail vein with the liposomal vehicle. Liposome-encapsulated clodronate (LEC)-only mice were injected with LEC. Gly-only mice were injected with Gly into a hind limb. LEC+Gly-treated mice were injected intravenously with 100 μl of LEC 24 h prior to Gly injection. Mice were sacrificed 24 h after Gly injection.
Results: Gly injection increased the serum creatinine level, and induced tubular damage. Renal CD45(+)CD11b(+)Ly6c(+) or CD45(+)CD11b(+)Ly6c(+)F4/80(+) macrophages were decreased by pretreatment with LEC in both normal and injured kidneys. Macrophage depletion prevented Gly-induced apoptotic death of tubular epithelial cells by decreasing caspase-9, ERK and p53, while increasing Bcl-2 expression. Expression of the inflammatory mediators NF-κB, MCP-1, ICAM-1, iNOS and COX-2 were also decreased with LEC pretreatment of mice injected with Gly.
Conclusion: These results support the hypothesis that depletion of macrophages prevents renal dysfunction by abrogating apoptosis and attenuating inflammation during AKI.