从电子健康记录中预测原发性心肌梗死的统计关系学习。

Jeremy C Weiss, David Page, Peggy L Peissig, Sriraam Natarajan, Catherine McCarty
{"title":"从电子健康记录中预测原发性心肌梗死的统计关系学习。","authors":"Jeremy C Weiss, David Page, Peggy L Peissig, Sriraam Natarajan, Catherine McCarty","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.</p>","PeriodicalId":74524,"journal":{"name":"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference","volume":"2012 ","pages":"2341-2347"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211289/pdf/nihms-406926.pdf","citationCount":"0","resultStr":"{\"title\":\"Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records.\",\"authors\":\"Jeremy C Weiss, David Page, Peggy L Peissig, Sriraam Natarajan, Catherine McCarty\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.</p>\",\"PeriodicalId\":74524,\"journal\":{\"name\":\"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference\",\"volume\":\"2012 \",\"pages\":\"2341-2347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211289/pdf/nihms-406926.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)是一个新兴的关系领域,具有改善临床结果的巨大潜力。我们将两种统计关系学习(SRL)算法应用于预测原发性心肌梗塞的任务中。我们的研究表明,一种 SRL 算法(关系功能梯度提升算法)的表现优于命题学习器,尤其是在医学相关的高召回率区域。我们观察到,这两种 SRL 算法对结果的预测都优于其命题类算法,并提出了我们的方法如何能增强当前流行病学实践的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records.

Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信