J Webster Stayman, Steven Tilley, Jeffrey H Siewerdsen
{"title":"具有形态和谱不确定性的惩罚似然重构中成分知识的集成。","authors":"J Webster Stayman, Steven Tilley, Jeffrey H Siewerdsen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and \"known\" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2014 ","pages":"111-115"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211110/pdf/nihms612683.pdf","citationCount":"0","resultStr":"{\"title\":\"Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.\",\"authors\":\"J Webster Stayman, Steven Tilley, Jeffrey H Siewerdsen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and \\\"known\\\" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.</p>\",\"PeriodicalId\":90477,\"journal\":{\"name\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"volume\":\"2014 \",\"pages\":\"111-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211110/pdf/nihms612683.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.
Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and "known" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.