{"title":"基因组学中多重检测问题的p值校准。","authors":"John P Ferguson, Dean Palejev","doi":"10.1515/sagmb-2013-0074","DOIUrl":null,"url":null,"abstract":"<p><p>Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"13 6","pages":"659-73"},"PeriodicalIF":0.8000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0074","citationCount":"1","resultStr":"{\"title\":\"P-value calibration for multiple testing problems in genomics.\",\"authors\":\"John P Ferguson, Dean Palejev\",\"doi\":\"10.1515/sagmb-2013-0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"13 6\",\"pages\":\"659-73\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2013-0074\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2013-0074\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
P-value calibration for multiple testing problems in genomics.
Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.