早期大脑发育的时空分析。

Neda Sadeghi, Marcel Prastawa, John H Gilmore, Weili Lin, Guido Gerig
{"title":"早期大脑发育的时空分析。","authors":"Neda Sadeghi,&nbsp;Marcel Prastawa,&nbsp;John H Gilmore,&nbsp;Weili Lin,&nbsp;Guido Gerig","doi":"10.1109/ACSSC.2010.5757670","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of human brain development is a crucial step for improved understanding of neurodevelopmental disorders. We focus on normal brain development as is observed in the multimodal longitudinal MRI/DTI data of neonates to two years of age. We present a spatio-temporal analysis framework using Gompertz function as a population growth model with three different spatial localization strategies: voxel-based, data driven clustering and atlas driven regional analysis. Growth models from multimodal imaging channels collected at each voxel form feature vectors which are clustered using the Dirichlet Process Mixture Models (DPMM). Clustering thus combines growth information from different modalities to subdivide the image into voxel groups with similar properties. The processing generates spatial maps that highlight the dynamic progression of white matter development. These maps show progression of white matter maturation where primarily, central regions mature earlier compared to the periphery, but where more subtle regional differences in growth can be observed. Atlas based analysis allows a quantitative analysis of a specific anatomical region, whereas data driven clustering identifies regions of similar growth patterns. The combination of these two allows us to investigate growth patterns within an anatomical region. Specifically, analysis of anterior and posterior limb of internal capsule show that there are different growth trajectories within these anatomies, and that it may be useful to divide certain anatomies into subregions with distinctive growth patterns.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2010 ","pages":"777-781"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2010.5757670","citationCount":"7","resultStr":"{\"title\":\"Spatio-Temporal Analysis of Early Brain Development.\",\"authors\":\"Neda Sadeghi,&nbsp;Marcel Prastawa,&nbsp;John H Gilmore,&nbsp;Weili Lin,&nbsp;Guido Gerig\",\"doi\":\"10.1109/ACSSC.2010.5757670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of human brain development is a crucial step for improved understanding of neurodevelopmental disorders. We focus on normal brain development as is observed in the multimodal longitudinal MRI/DTI data of neonates to two years of age. We present a spatio-temporal analysis framework using Gompertz function as a population growth model with three different spatial localization strategies: voxel-based, data driven clustering and atlas driven regional analysis. Growth models from multimodal imaging channels collected at each voxel form feature vectors which are clustered using the Dirichlet Process Mixture Models (DPMM). Clustering thus combines growth information from different modalities to subdivide the image into voxel groups with similar properties. The processing generates spatial maps that highlight the dynamic progression of white matter development. These maps show progression of white matter maturation where primarily, central regions mature earlier compared to the periphery, but where more subtle regional differences in growth can be observed. Atlas based analysis allows a quantitative analysis of a specific anatomical region, whereas data driven clustering identifies regions of similar growth patterns. The combination of these two allows us to investigate growth patterns within an anatomical region. Specifically, analysis of anterior and posterior limb of internal capsule show that there are different growth trajectories within these anatomies, and that it may be useful to divide certain anatomies into subregions with distinctive growth patterns.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"2010 \",\"pages\":\"777-781\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ACSSC.2010.5757670\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2010.5757670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2010.5757670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对人类大脑发育的分析是提高对神经发育障碍理解的关键一步。我们关注的是正常的大脑发育,正如在新生儿的多模态纵向MRI/DTI数据中观察到的那样。本文提出了一个以Gompertz函数作为人口增长模型的时空分析框架,并采用三种不同的空间定位策略:基于体素的、数据驱动的聚类和地图集驱动的区域分析。在每个体素处收集的多模态成像通道的生长模型形成特征向量,使用Dirichlet过程混合模型(DPMM)对其进行聚类。因此,聚类结合来自不同模态的生长信息,将图像细分为具有相似属性的体素组。这一过程生成的空间图突出了白质发育的动态进展。这些图显示了白质成熟的进展,主要是中央区域比外围区域成熟得早,但可以观察到更细微的区域生长差异。基于图谱的分析允许对特定解剖区域进行定量分析,而数据驱动的聚类识别相似生长模式的区域。这两者的结合使我们能够研究解剖区域内的生长模式。具体而言,对内囊前肢和后肢的分析表明,在这些解剖结构中存在不同的生长轨迹,并且将某些解剖结构划分为具有不同生长模式的亚区可能是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatio-Temporal Analysis of Early Brain Development.

Spatio-Temporal Analysis of Early Brain Development.

Spatio-Temporal Analysis of Early Brain Development.

Spatio-Temporal Analysis of Early Brain Development.

Analysis of human brain development is a crucial step for improved understanding of neurodevelopmental disorders. We focus on normal brain development as is observed in the multimodal longitudinal MRI/DTI data of neonates to two years of age. We present a spatio-temporal analysis framework using Gompertz function as a population growth model with three different spatial localization strategies: voxel-based, data driven clustering and atlas driven regional analysis. Growth models from multimodal imaging channels collected at each voxel form feature vectors which are clustered using the Dirichlet Process Mixture Models (DPMM). Clustering thus combines growth information from different modalities to subdivide the image into voxel groups with similar properties. The processing generates spatial maps that highlight the dynamic progression of white matter development. These maps show progression of white matter maturation where primarily, central regions mature earlier compared to the periphery, but where more subtle regional differences in growth can be observed. Atlas based analysis allows a quantitative analysis of a specific anatomical region, whereas data driven clustering identifies regions of similar growth patterns. The combination of these two allows us to investigate growth patterns within an anatomical region. Specifically, analysis of anterior and posterior limb of internal capsule show that there are different growth trajectories within these anatomies, and that it may be useful to divide certain anatomies into subregions with distinctive growth patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信