Jie Liu, Chunming Zhang, Elizabeth Burnside, David Page
{"title":"基于半参数图模型的依赖性多重检验。","authors":"Jie Liu, Chunming Zhang, Elizabeth Burnside, David Page","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It has been shown that graphical models can be used to leverage the dependence in large-scale multiple testing problems with significantly improved performance (Sun & Cai, 2009; Liu et al., 2012). These graphical models are fully parametric and require that we know the parameterization of <i>f</i><sub>1</sub> - the density function of the test statistic under the alternative hypothesis. However in practice, <i>f</i><sub>1</sub> is often heterogeneous, and cannot be estimated with a simple parametric distribution. We propose a novel semiparametric approach for multiple testing under dependence, which estimates <i>f</i><sub>1</sub> adaptively. This semiparametric approach exactly generalizes the local FDR procedure (Efron et al., 2001) and connects with the BH procedure (Benjamini & Hochberg, 1995). A variety of simulations show that our semiparametric approach outperforms classical procedures which assume independence and the parametric approaches which capture dependence.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"32 2","pages":"955-963"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190841/pdf/nihms612860.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiple Testing under Dependence via Semiparametric Graphical Models.\",\"authors\":\"Jie Liu, Chunming Zhang, Elizabeth Burnside, David Page\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been shown that graphical models can be used to leverage the dependence in large-scale multiple testing problems with significantly improved performance (Sun & Cai, 2009; Liu et al., 2012). These graphical models are fully parametric and require that we know the parameterization of <i>f</i><sub>1</sub> - the density function of the test statistic under the alternative hypothesis. However in practice, <i>f</i><sub>1</sub> is often heterogeneous, and cannot be estimated with a simple parametric distribution. We propose a novel semiparametric approach for multiple testing under dependence, which estimates <i>f</i><sub>1</sub> adaptively. This semiparametric approach exactly generalizes the local FDR procedure (Efron et al., 2001) and connects with the BH procedure (Benjamini & Hochberg, 1995). A variety of simulations show that our semiparametric approach outperforms classical procedures which assume independence and the parametric approaches which capture dependence.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"32 2\",\"pages\":\"955-963\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190841/pdf/nihms612860.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
已有研究表明,图形模型可用于利用大规模多重测试问题中的依赖性,从而显著提高性能(Sun & Cai, 2009;刘等人,2012)。这些图形模型是完全参数化的,要求我们知道f1的参数化,即在备择假设下检验统计量的密度函数。然而,在实践中,f1往往是异质的,不能用简单的参数分布来估计。我们提出了一种新的半参数方法,该方法可以自适应估计f1。这种半参数方法精确地推广了局部FDR过程(Efron et al., 2001),并与BH过程(Benjamini & Hochberg, 1995)相联系。各种模拟表明,我们的半参数方法优于传统的假设独立性的方法和捕获依赖性的参数方法。
Multiple Testing under Dependence via Semiparametric Graphical Models.
It has been shown that graphical models can be used to leverage the dependence in large-scale multiple testing problems with significantly improved performance (Sun & Cai, 2009; Liu et al., 2012). These graphical models are fully parametric and require that we know the parameterization of f1 - the density function of the test statistic under the alternative hypothesis. However in practice, f1 is often heterogeneous, and cannot be estimated with a simple parametric distribution. We propose a novel semiparametric approach for multiple testing under dependence, which estimates f1 adaptively. This semiparametric approach exactly generalizes the local FDR procedure (Efron et al., 2001) and connects with the BH procedure (Benjamini & Hochberg, 1995). A variety of simulations show that our semiparametric approach outperforms classical procedures which assume independence and the parametric approaches which capture dependence.