基于粒子滤波的自发对话中情感的视频、音频和词汇指标组合。

Arman Savran, Houwei Cao, Miraj Shah, Ani Nenkova, Ragini Verma
{"title":"基于粒子滤波的自发对话中情感的视频、音频和词汇指标组合。","authors":"Arman Savran, Houwei Cao, Miraj Shah, Ani Nenkova, Ragini Verma","doi":"10.1145/2388676.2388781","DOIUrl":null,"url":null,"abstract":"We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.","PeriodicalId":74508,"journal":{"name":"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)","volume":"2012 ","pages":"485-492"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2388676.2388781","citationCount":"73","resultStr":"{\"title\":\"Combining Video, Audio and Lexical Indicators of Affect in Spontaneous Conversation via Particle Filtering.\",\"authors\":\"Arman Savran, Houwei Cao, Miraj Shah, Ani Nenkova, Ragini Verma\",\"doi\":\"10.1145/2388676.2388781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.\",\"PeriodicalId\":74508,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)\",\"volume\":\"2012 \",\"pages\":\"485-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2388676.2388781\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2388676.2388781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2388676.2388781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

我们提出的实验融合面部视频,音频和词汇指标的影响估计在二元对话。我们使用从面部视频中提取的纹理描述符的时间统计,各种声学特征和词汇特征的组合,为每个模态创建基于回归的影响估计器。在贝叶斯过滤框架中,通过将这些独立的回归输出作为影响状态的测量,将单模态回归量与粒子滤波结合起来,在贝叶斯过滤框架中,先前的观察通过学习的影响动态提供对当前状态的预测。在视听情感识别挑战数据集上测试,我们的单模态估计器在情感的每个维度上都比官方基线方法获得了更高的分数。我们基于滤波的多模态融合在全连续子挑战和词级子挑战上的相关性能分别为0.344(基线:0.136)和0.280(基线:0.096)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Video, Audio and Lexical Indicators of Affect in Spontaneous Conversation via Particle Filtering.
We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信