物理法和共价法在TiO2纳米颗粒上固定化纤维素酶的比较研究。

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Razi Ahmad, Meryam Sardar
{"title":"物理法和共价法在TiO2纳米颗粒上固定化纤维素酶的比较研究。","authors":"Razi Ahmad,&nbsp;Meryam Sardar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilization of cellulase from Aspergillus niger on TiO2 nanoparticles was studied by two different approaches--physical adsorption and covalent coupling. A. niger was selected, as it is generally non-pathogenic, is found in nature in the broad range of habitats and produces cellulase extracellulary. For covalent method, TiO2 nanoparticles were modified with aminopropyltriethoxysilane (APTS). The adsorbed and covalently immobilized enzymes showed 76% and 93% activity, respectively, as compared to the free enzyme. The catalytic efficiency V(max)/K(m) increased from 0.4 to 4.0 after covalent attachment, whereas in adsorption method, it increased slightly from 0.4 to 1.2. The covalently-immobilized and adsorbed cellulase lost only 25% and 50% of their activity, respectively after 60 min of incubation at 75 degrees C. The reusability and operational stability data also showed that covalent coupling increased the stability of the enzyme. The presence of enzyme on TiO2 nanoparticles was confirmed by Fourier-transform infrared spectroscopy. The high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) studies indicated aggregation of enzyme when adsorbed on TiO2 surface and a monolayer of enzyme in covalent attachment. In conclusion, covalently attached cellulase retained good activity and thermal stability, as compared to physically adsorbed enzyme. The lower amount of enzyme activity and thermal stability in case of physically adsorbed immobilized enzyme was due to aggregation of the enzyme after adsorption on TiO2 nanoparticles, as revealed by HR-TEM and AFM. Thus, TiO2 nanoparticles could be suitable candidates for immobilization of cellulase for industrial applications like paper, textile, detergent and food industries.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 4","pages":"314-20"},"PeriodicalIF":1.5000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study.\",\"authors\":\"Razi Ahmad,&nbsp;Meryam Sardar\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immobilization of cellulase from Aspergillus niger on TiO2 nanoparticles was studied by two different approaches--physical adsorption and covalent coupling. A. niger was selected, as it is generally non-pathogenic, is found in nature in the broad range of habitats and produces cellulase extracellulary. For covalent method, TiO2 nanoparticles were modified with aminopropyltriethoxysilane (APTS). The adsorbed and covalently immobilized enzymes showed 76% and 93% activity, respectively, as compared to the free enzyme. The catalytic efficiency V(max)/K(m) increased from 0.4 to 4.0 after covalent attachment, whereas in adsorption method, it increased slightly from 0.4 to 1.2. The covalently-immobilized and adsorbed cellulase lost only 25% and 50% of their activity, respectively after 60 min of incubation at 75 degrees C. The reusability and operational stability data also showed that covalent coupling increased the stability of the enzyme. The presence of enzyme on TiO2 nanoparticles was confirmed by Fourier-transform infrared spectroscopy. The high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) studies indicated aggregation of enzyme when adsorbed on TiO2 surface and a monolayer of enzyme in covalent attachment. In conclusion, covalently attached cellulase retained good activity and thermal stability, as compared to physically adsorbed enzyme. The lower amount of enzyme activity and thermal stability in case of physically adsorbed immobilized enzyme was due to aggregation of the enzyme after adsorption on TiO2 nanoparticles, as revealed by HR-TEM and AFM. Thus, TiO2 nanoparticles could be suitable candidates for immobilization of cellulase for industrial applications like paper, textile, detergent and food industries.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 4\",\"pages\":\"314-20\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用物理吸附和共价偶联两种不同的方法研究了黑曲霉纤维素酶在TiO2纳米颗粒上的固定化。之所以选择黑曲霉,是因为它通常是非致病性的,在自然界中广泛存在,并在细胞外产生纤维素酶。在共价法中,用氨丙基三乙氧基硅烷(APTS)修饰TiO2纳米粒子。与游离酶相比,吸附酶和共价固定化酶的活性分别为76%和93%。共价吸附法的催化效率V(max)/K(m)由0.4提高到4.0,而吸附法的催化效率由0.4提高到1.2。在75℃下孵育60 min后,共价固定和吸附的纤维素酶的活性分别下降了25%和50%。可重复使用性和操作稳定性数据也表明,共价偶联提高了酶的稳定性。利用傅里叶变换红外光谱证实了酶在TiO2纳米颗粒上的存在。高分辨率透射电子显微镜(HR-TEM)和原子力显微镜(AFM)研究表明,酶吸附在TiO2表面时发生聚集,并以共价方式附着单层酶。综上所述,与物理吸附的酶相比,共价吸附的纤维素酶保持了良好的活性和热稳定性。HR-TEM和AFM分析表明,物理吸附固定化酶的酶活性和热稳定性较低是由于酶在TiO2纳米颗粒上吸附后发生聚集。因此,TiO2纳米颗粒可以作为固定化纤维素酶的合适候选物,应用于造纸、纺织、洗涤剂和食品等工业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study.

Immobilization of cellulase from Aspergillus niger on TiO2 nanoparticles was studied by two different approaches--physical adsorption and covalent coupling. A. niger was selected, as it is generally non-pathogenic, is found in nature in the broad range of habitats and produces cellulase extracellulary. For covalent method, TiO2 nanoparticles were modified with aminopropyltriethoxysilane (APTS). The adsorbed and covalently immobilized enzymes showed 76% and 93% activity, respectively, as compared to the free enzyme. The catalytic efficiency V(max)/K(m) increased from 0.4 to 4.0 after covalent attachment, whereas in adsorption method, it increased slightly from 0.4 to 1.2. The covalently-immobilized and adsorbed cellulase lost only 25% and 50% of their activity, respectively after 60 min of incubation at 75 degrees C. The reusability and operational stability data also showed that covalent coupling increased the stability of the enzyme. The presence of enzyme on TiO2 nanoparticles was confirmed by Fourier-transform infrared spectroscopy. The high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) studies indicated aggregation of enzyme when adsorbed on TiO2 surface and a monolayer of enzyme in covalent attachment. In conclusion, covalently attached cellulase retained good activity and thermal stability, as compared to physically adsorbed enzyme. The lower amount of enzyme activity and thermal stability in case of physically adsorbed immobilized enzyme was due to aggregation of the enzyme after adsorption on TiO2 nanoparticles, as revealed by HR-TEM and AFM. Thus, TiO2 nanoparticles could be suitable candidates for immobilization of cellulase for industrial applications like paper, textile, detergent and food industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian journal of biochemistry & biophysics
Indian journal of biochemistry & biophysics 生物-生化与分子生物学
CiteScore
2.90
自引率
50.00%
发文量
88
审稿时长
3 months
期刊介绍: Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB. Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信