基于置信度的特征组合识别盲人服装图案

Xiaodong Yang, Shuai Yuan, YingLi Tian
{"title":"基于置信度的特征组合识别盲人服装图案","authors":"Xiaodong Yang,&nbsp;Shuai Yuan,&nbsp;YingLi Tian","doi":"10.1145/2072298.2071947","DOIUrl":null,"url":null,"abstract":"<p><p>Clothes pattern recognition is a challenging task for blind or visually impaired people. Automatic clothes pattern recognition is also a challenging problem in computer vision due to the large pattern variations. In this paper, we present a new method to classify clothes patterns into 4 categories: stripe, lattice, special, and patternless. While existing texture analysis methods mainly focused on textures varying with distinctive pattern changes, they cannot achieve the same level of accuracy for clothes pattern recognition because of the large intra-class variations in each clothes pattern category. To solve this problem, we extract both structural feature and statistical feature from image wavelet subbands. Furthermore, we develop a new feature combination scheme based on the confidence margin of a classifier to combine the two types of features to form a novel local image descriptor in a compact and discriminative format. The recognition experiment is conducted on a database with 627 clothes images of 4 categories of patterns. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art texture analysis methods in the context of clothes pattern recognition.</p>","PeriodicalId":90687,"journal":{"name":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","volume":"2011 ","pages":"1097-1100"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2072298.2071947","citationCount":"34","resultStr":"{\"title\":\"Recognizing Clothes Patterns for Blind People by Confidence Margin based Feature Combination.\",\"authors\":\"Xiaodong Yang,&nbsp;Shuai Yuan,&nbsp;YingLi Tian\",\"doi\":\"10.1145/2072298.2071947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clothes pattern recognition is a challenging task for blind or visually impaired people. Automatic clothes pattern recognition is also a challenging problem in computer vision due to the large pattern variations. In this paper, we present a new method to classify clothes patterns into 4 categories: stripe, lattice, special, and patternless. While existing texture analysis methods mainly focused on textures varying with distinctive pattern changes, they cannot achieve the same level of accuracy for clothes pattern recognition because of the large intra-class variations in each clothes pattern category. To solve this problem, we extract both structural feature and statistical feature from image wavelet subbands. Furthermore, we develop a new feature combination scheme based on the confidence margin of a classifier to combine the two types of features to form a novel local image descriptor in a compact and discriminative format. The recognition experiment is conducted on a database with 627 clothes images of 4 categories of patterns. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art texture analysis methods in the context of clothes pattern recognition.</p>\",\"PeriodicalId\":90687,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"volume\":\"2011 \",\"pages\":\"1097-1100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2072298.2071947\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2072298.2071947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072298.2071947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

服装模式识别对盲人或视障人士来说是一项具有挑战性的任务。服装模式的自动识别也是计算机视觉中一个具有挑战性的问题。本文提出了一种将服装图案分为条纹、格子、特殊、无图案4类的新方法。现有的纹理分析方法主要关注的是随着图案变化而变化的纹理,但由于每个服装图案类别的类内变化较大,因此无法达到服装模式识别的同样精度。为了解决这一问题,我们从图像小波子带中提取结构特征和统计特征。在此基础上,提出了一种基于分类器置信度的特征组合方案,将两类特征组合在一起,形成一种紧凑、判别格式的局部图像描述符。在一个包含4类图案的627幅服装图像的数据库上进行识别实验。实验结果表明,该方法在服装模式识别中明显优于现有的纹理分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing Clothes Patterns for Blind People by Confidence Margin based Feature Combination.

Clothes pattern recognition is a challenging task for blind or visually impaired people. Automatic clothes pattern recognition is also a challenging problem in computer vision due to the large pattern variations. In this paper, we present a new method to classify clothes patterns into 4 categories: stripe, lattice, special, and patternless. While existing texture analysis methods mainly focused on textures varying with distinctive pattern changes, they cannot achieve the same level of accuracy for clothes pattern recognition because of the large intra-class variations in each clothes pattern category. To solve this problem, we extract both structural feature and statistical feature from image wavelet subbands. Furthermore, we develop a new feature combination scheme based on the confidence margin of a classifier to combine the two types of features to form a novel local image descriptor in a compact and discriminative format. The recognition experiment is conducted on a database with 627 clothes images of 4 categories of patterns. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art texture analysis methods in the context of clothes pattern recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信