岩石应力相关孔隙度和渗透率衰减的建模方法

IF 4.9 2区 工程技术 Q2 ENERGY & FUELS
Teng Su , Hongwei Zhou , Jiawei Zhao , Zelin Liu , Huilin Deng
{"title":"岩石应力相关孔隙度和渗透率衰减的建模方法","authors":"Teng Su ,&nbsp;Hongwei Zhou ,&nbsp;Jiawei Zhao ,&nbsp;Zelin Liu ,&nbsp;Huilin Deng","doi":"10.1016/j.jngse.2022.104765","DOIUrl":null,"url":null,"abstract":"<div><p>The rock porosity or permeability highly depends on stress, a crucial property in resource exploitation and geological storage engineering. However, due to factors such as rock types, loading paths, and loading ranges, the stress-porosity/permeability relationships are pretty different, exhibiting linear, nonlinear, or even heavy-tailed characteristics. The exponential and power-law models, two mainstream empirical relationships for describing the rock permeability and porosity decays, are used to fit the data with “heavy tail” characteristics but yield poor fitting or outrageous predictions for specific stress ranges. Based on the physical interpretation of the compaction-induced microstructural evolution inside the rock, this paper proposes fractional-order relaxation equations, which consider the memory effect of permeability/porosity variations with stress, leading to accurate descriptions of effective stress-porosity/permeability relationships by the Mittag-Leffler (ML) law. The fitting on low-permeability shales and relatively high-permeability sandstones shows that the ML law agrees better with the experimental data, especially with “heavy tail” characteristics than the two classical laws. Moreover, the numerical solutions for the proposed ML models are presented via the predictor-corrector algorithm. The relationship between the ML, exponential, and power laws is also discussed.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"106 ","pages":"Article 104765"},"PeriodicalIF":4.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modeling approach to stress-dependent porosity and permeability decays of rocks\",\"authors\":\"Teng Su ,&nbsp;Hongwei Zhou ,&nbsp;Jiawei Zhao ,&nbsp;Zelin Liu ,&nbsp;Huilin Deng\",\"doi\":\"10.1016/j.jngse.2022.104765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rock porosity or permeability highly depends on stress, a crucial property in resource exploitation and geological storage engineering. However, due to factors such as rock types, loading paths, and loading ranges, the stress-porosity/permeability relationships are pretty different, exhibiting linear, nonlinear, or even heavy-tailed characteristics. The exponential and power-law models, two mainstream empirical relationships for describing the rock permeability and porosity decays, are used to fit the data with “heavy tail” characteristics but yield poor fitting or outrageous predictions for specific stress ranges. Based on the physical interpretation of the compaction-induced microstructural evolution inside the rock, this paper proposes fractional-order relaxation equations, which consider the memory effect of permeability/porosity variations with stress, leading to accurate descriptions of effective stress-porosity/permeability relationships by the Mittag-Leffler (ML) law. The fitting on low-permeability shales and relatively high-permeability sandstones shows that the ML law agrees better with the experimental data, especially with “heavy tail” characteristics than the two classical laws. Moreover, the numerical solutions for the proposed ML models are presented via the predictor-corrector algorithm. The relationship between the ML, exponential, and power laws is also discussed.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"106 \",\"pages\":\"Article 104765\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003511\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

岩石的孔隙度或渗透率在很大程度上取决于应力,这是资源开发和地质储存工程中的一个重要性质。然而,由于岩石类型、加载路径和加载范围等因素的影响,应力-孔隙度/渗透率关系存在较大差异,表现为线性、非线性甚至重尾特征。指数和幂律模型是描述岩石渗透率和孔隙度衰减的两种主流经验关系,用于拟合具有“重尾”特征的数据,但对特定应力范围的拟合效果不佳或预测结果令人难以置信。在对压实作用下岩石内部微观结构演化进行物理解释的基础上,提出了考虑渗透率/孔隙度随应力变化的记忆效应的分数阶松弛方程,利用Mittag-Leffler (ML)定律准确描述了有效的应力-孔隙度/渗透率关系。对低渗透页岩和相对高渗透砂岩的拟合表明,ML规律与实验数据吻合较好,特别是“重尾”特征优于两个经典规律。此外,通过预测校正算法给出了所提出的机器学习模型的数值解。还讨论了ML、指数律和幂律之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modeling approach to stress-dependent porosity and permeability decays of rocks

The rock porosity or permeability highly depends on stress, a crucial property in resource exploitation and geological storage engineering. However, due to factors such as rock types, loading paths, and loading ranges, the stress-porosity/permeability relationships are pretty different, exhibiting linear, nonlinear, or even heavy-tailed characteristics. The exponential and power-law models, two mainstream empirical relationships for describing the rock permeability and porosity decays, are used to fit the data with “heavy tail” characteristics but yield poor fitting or outrageous predictions for specific stress ranges. Based on the physical interpretation of the compaction-induced microstructural evolution inside the rock, this paper proposes fractional-order relaxation equations, which consider the memory effect of permeability/porosity variations with stress, leading to accurate descriptions of effective stress-porosity/permeability relationships by the Mittag-Leffler (ML) law. The fitting on low-permeability shales and relatively high-permeability sandstones shows that the ML law agrees better with the experimental data, especially with “heavy tail” characteristics than the two classical laws. Moreover, the numerical solutions for the proposed ML models are presented via the predictor-corrector algorithm. The relationship between the ML, exponential, and power laws is also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Natural Gas Science and Engineering
Journal of Natural Gas Science and Engineering ENERGY & FUELS-ENGINEERING, CHEMICAL
CiteScore
8.90
自引率
0.00%
发文量
388
审稿时长
3.6 months
期刊介绍: The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信