从内镜活检中自动检测结肠炎作为诊断病理学的组织筛选工具。

Michael T McCann, Ramamurthy Bhagavatula, Matthew C Fickus, John A Ozolek, Jelena Kovačević
{"title":"从内镜活检中自动检测结肠炎作为诊断病理学的组织筛选工具。","authors":"Michael T McCann,&nbsp;Ramamurthy Bhagavatula,&nbsp;Matthew C Fickus,&nbsp;John A Ozolek,&nbsp;Jelena Kovačević","doi":"10.1109/ICIP.2012.6467483","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method for identifying colitis in colon biopsies as an extension of our framework for the automated identification of tissues in histology images. Histology is a critical tool in both clinical and research applications, yet even mundane histological analysis, such as the screening of colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour, indicating a niche for potential automation. To this end, we build upon our previous work by extending the histopathology vocabulary (a set of features based on visual cues used by pathologists) with new features driven by the colitis application. We use the multiple-instance learning framework to allow our pixel-level classifier to learn from image-level training labels. The new system achieves accuracy comparable to state-of-the-art biological image classifiers with fewer and more intuitive features.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2012 ","pages":"2809-2812"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICIP.2012.6467483","citationCount":"14","resultStr":"{\"title\":\"AUTOMATED COLITIS DETECTION FROM ENDOSCOPIC BIOPSIES AS A TISSUE SCREENING TOOL IN DIAGNOSTIC PATHOLOGY.\",\"authors\":\"Michael T McCann,&nbsp;Ramamurthy Bhagavatula,&nbsp;Matthew C Fickus,&nbsp;John A Ozolek,&nbsp;Jelena Kovačević\",\"doi\":\"10.1109/ICIP.2012.6467483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a method for identifying colitis in colon biopsies as an extension of our framework for the automated identification of tissues in histology images. Histology is a critical tool in both clinical and research applications, yet even mundane histological analysis, such as the screening of colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour, indicating a niche for potential automation. To this end, we build upon our previous work by extending the histopathology vocabulary (a set of features based on visual cues used by pathologists) with new features driven by the colitis application. We use the multiple-instance learning framework to allow our pixel-level classifier to learn from image-level training labels. The new system achieves accuracy comparable to state-of-the-art biological image classifiers with fewer and more intuitive features.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2012 \",\"pages\":\"2809-2812\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICIP.2012.6467483\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2012.6467483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2012.6467483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出了一种在结肠活检中识别结肠炎的方法,作为我们在组织学图像中组织自动识别框架的扩展。组织学在临床和研究应用中都是一个重要的工具,然而,即使是普通的组织学分析,如结肠活检的筛查,也必须由训练有素的病理学家以每小时高昂的成本进行,这表明了潜在的自动化空间。为此,我们在之前工作的基础上,扩展了组织病理学词汇表(一组基于病理学家使用的视觉线索的特征),并添加了结肠炎应用驱动的新特征。我们使用多实例学习框架来允许像素级分类器从图像级训练标签中学习。新系统实现了与最先进的生物图像分类器相当的精度,具有更少和更直观的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AUTOMATED COLITIS DETECTION FROM ENDOSCOPIC BIOPSIES AS A TISSUE SCREENING TOOL IN DIAGNOSTIC PATHOLOGY.

AUTOMATED COLITIS DETECTION FROM ENDOSCOPIC BIOPSIES AS A TISSUE SCREENING TOOL IN DIAGNOSTIC PATHOLOGY.

AUTOMATED COLITIS DETECTION FROM ENDOSCOPIC BIOPSIES AS A TISSUE SCREENING TOOL IN DIAGNOSTIC PATHOLOGY.

We present a method for identifying colitis in colon biopsies as an extension of our framework for the automated identification of tissues in histology images. Histology is a critical tool in both clinical and research applications, yet even mundane histological analysis, such as the screening of colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour, indicating a niche for potential automation. To this end, we build upon our previous work by extending the histopathology vocabulary (a set of features based on visual cues used by pathologists) with new features driven by the colitis application. We use the multiple-instance learning framework to allow our pixel-level classifier to learn from image-level training labels. The new system achieves accuracy comparable to state-of-the-art biological image classifiers with fewer and more intuitive features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信