基于压缩感知方法结合基因表达和CNVs数据的胶质瘤亚型分析。

Wenlong Tang, Hongbao Cao, Ji-Gang Zhang, Junbo Duan, Dongdong Lin, Yu-Ping Wang
{"title":"基于压缩感知方法结合基因表达和CNVs数据的胶质瘤亚型分析。","authors":"Wenlong Tang,&nbsp;Hongbao Cao,&nbsp;Ji-Gang Zhang,&nbsp;Junbo Duan,&nbsp;Dongdong Lin,&nbsp;Yu-Ping Wang","doi":"10.4172/2169-0111.1000101","DOIUrl":null,"url":null,"abstract":"<p><p>It is realized that a combined analysis of different types of genomic measurements tends to give more reliable classification results. However, how to efficiently combine data with different resolutions is challenging. We propose a novel compressed sensing based approach for the combined analysis of gene expression and copy number variants data for the purpose of subtyping six types of Gliomas. Experimental results show that the proposed combined approach can substantially improve the classification accuracy compared to that of using either of individual data type. The proposed approach can be applicable to many other types of genomic data.</p>","PeriodicalId":89733,"journal":{"name":"Advancements in genetic engineering","volume":"1 ","pages":"101"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2169-0111.1000101","citationCount":"4","resultStr":"{\"title\":\"Subtyping of Gliomaby Combining Gene Expression and CNVs Data Based on a Compressive Sensing Approach.\",\"authors\":\"Wenlong Tang,&nbsp;Hongbao Cao,&nbsp;Ji-Gang Zhang,&nbsp;Junbo Duan,&nbsp;Dongdong Lin,&nbsp;Yu-Ping Wang\",\"doi\":\"10.4172/2169-0111.1000101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is realized that a combined analysis of different types of genomic measurements tends to give more reliable classification results. However, how to efficiently combine data with different resolutions is challenging. We propose a novel compressed sensing based approach for the combined analysis of gene expression and copy number variants data for the purpose of subtyping six types of Gliomas. Experimental results show that the proposed combined approach can substantially improve the classification accuracy compared to that of using either of individual data type. The proposed approach can be applicable to many other types of genomic data.</p>\",\"PeriodicalId\":89733,\"journal\":{\"name\":\"Advancements in genetic engineering\",\"volume\":\"1 \",\"pages\":\"101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2169-0111.1000101\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advancements in genetic engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0111.1000101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in genetic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0111.1000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人们认识到,不同类型的基因组测量的组合分析倾向于给出更可靠的分类结果。然而,如何有效地组合不同分辨率的数据是一个挑战。我们提出了一种新的基于压缩感知的方法,用于基因表达和拷贝数变异数据的组合分析,以分型六种类型的胶质瘤。实验结果表明,与单独使用一种数据类型的分类方法相比,所提出的组合方法可以显著提高分类精度。所提出的方法可以适用于许多其他类型的基因组数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subtyping of Gliomaby Combining Gene Expression and CNVs Data Based on a Compressive Sensing Approach.

Subtyping of Gliomaby Combining Gene Expression and CNVs Data Based on a Compressive Sensing Approach.

It is realized that a combined analysis of different types of genomic measurements tends to give more reliable classification results. However, how to efficiently combine data with different resolutions is challenging. We propose a novel compressed sensing based approach for the combined analysis of gene expression and copy number variants data for the purpose of subtyping six types of Gliomas. Experimental results show that the proposed combined approach can substantially improve the classification accuracy compared to that of using either of individual data type. The proposed approach can be applicable to many other types of genomic data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信