纳米颗粒依赖性补体活化的物理化学特征。

Dennis G Thomas, Satish Chikkagoudar, Alejandro Heredia-Langer, Mark F Tardiff, Zhixiang Xu, Dennis E Hourcade, Christine T N Pham, Gregory M Lanza, Kilian Q Weinberger, Nathan A Baker
{"title":"纳米颗粒依赖性补体活化的物理化学特征。","authors":"Dennis G Thomas,&nbsp;Satish Chikkagoudar,&nbsp;Alejandro Heredia-Langer,&nbsp;Mark F Tardiff,&nbsp;Zhixiang Xu,&nbsp;Dennis E Hourcade,&nbsp;Christine T N Pham,&nbsp;Gregory M Lanza,&nbsp;Kilian Q Weinberger,&nbsp;Nathan A Baker","doi":"10.1088/1749-4699/7/1/015003","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an <i>in vi</i>tro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.</p>","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"7 1","pages":"015003"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/7/1/015003","citationCount":"12","resultStr":"{\"title\":\"Physicochemical signatures of nanoparticle-dependent complement activation.\",\"authors\":\"Dennis G Thomas,&nbsp;Satish Chikkagoudar,&nbsp;Alejandro Heredia-Langer,&nbsp;Mark F Tardiff,&nbsp;Zhixiang Xu,&nbsp;Dennis E Hourcade,&nbsp;Christine T N Pham,&nbsp;Gregory M Lanza,&nbsp;Kilian Q Weinberger,&nbsp;Nathan A Baker\",\"doi\":\"10.1088/1749-4699/7/1/015003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an <i>in vi</i>tro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.</p>\",\"PeriodicalId\":89345,\"journal\":{\"name\":\"Computational science & discovery\",\"volume\":\"7 1\",\"pages\":\"015003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1749-4699/7/1/015003\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational science & discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1749-4699/7/1/015003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/7/1/015003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

纳米粒子是潜在的强大的治疗工具,具有靶向药物有效载荷和显像剂的能力。然而,一些纳米颗粒可以激活补体,先天免疫系统的一个分支,并引起不良的副作用。最近,我们采用了一种体外溶血试验来测量尺寸、表面电荷和表面化学不同的全氟碳纳米颗粒的血清补体活性,使用一种称为残余溶血活性(RHA)的度量来量化纳米颗粒依赖的补体活性。在目前的工作中,我们使用决策树学习算法来推导基于溶血试验研究产生的数据估计纳米颗粒依赖性补体反应的规则。我们的研究结果表明,纳米颗粒的物理化学性质,即纳米颗粒的大小、多分散性指数、zeta电位和活性表面配体的摩尔百分比,可以作为决策树建模框架中预测纳米颗粒依赖性补体活化的良好描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physicochemical signatures of nanoparticle-dependent complement activation.

Physicochemical signatures of nanoparticle-dependent complement activation.

Physicochemical signatures of nanoparticle-dependent complement activation.

Physicochemical signatures of nanoparticle-dependent complement activation.

Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信