基于多项式narx的模块化化工系统非线性模型预测控制

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anastasia Nikolakopoulou, Richard D. Braatz
{"title":"基于多项式narx的模块化化工系统非线性模型预测控制","authors":"Anastasia Nikolakopoulou,&nbsp;Richard D. Braatz","doi":"10.1016/j.compchemeng.2023.108272","DOIUrl":null,"url":null,"abstract":"<div><p>The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic<span><span> models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear </span>model predictive control<span> (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.</span></span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"177 ","pages":"Article 108272"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polynomial NARX-based nonlinear model predictive control of modular chemical systems\",\"authors\":\"Anastasia Nikolakopoulou,&nbsp;Richard D. Braatz\",\"doi\":\"10.1016/j.compchemeng.2023.108272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic<span><span> models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear </span>model predictive control<span> (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.</span></span></p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"177 \",\"pages\":\"Article 108272\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423001424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

模块化化工系统的控制系统设计通常需要识别非线性动态模型。模块化化学系统的机制模型通常是高阶的,这导致当模型被纳入为明确考虑约束而开发的非线性模型预测控制(NMPC)公式时,在线计算成本很高。本文建议在NMPC公式中使用一类特殊的非线性输入输出模型,多项式非线性自回归外生输入(NARX)模型。一个机器学习算法,弹性网,被用来选择哪些项包括在NARX多项式级数表示。以一个双输入双输出化学反应器为例,阐述了稀疏预测模型的构建方法及其在实时可实现NMPC中的应用。采用Julia编程语言解决NMPC优化问题,降低了在线计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial NARX-based nonlinear model predictive control of modular chemical systems

The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear model predictive control (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信