{"title":"新发急性白血病的NRAS突变:患病率和临床意义。","authors":"Nageswara Rao Dunna, Sugunakar Vuree, Cingeetham Anuradha, Kagita Sailaja, Damineni Surekha, Raghunadha Rao Digumarti, V R Rao, Satish Kumar Yadav, Rajasekhar Reddy, Satti Vishnupriya","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The activating mutations of the Ras gene or other abnormalities in Ras signaling pathway lead to uncontrolled growth factor-independent proliferation of hematopoietic progenitors. Oncogenic mutations in NRAS gene have been observed with variable prevalence in hematopoietic malignancies. In the present study, NRAS mutations were detected using bidirectional sequencing in 264 acute leukemia cases--129 acute lymphocytic leukemia (ALL) and 135 acute myeloid leukemia (AML) and 245 age- and gender-matched controls. Missense mutation was observed only in the 12th codon of NRAS gene in 4.7% of AML and 3.16% of ALL cases. The presence of NRAS mutation did not significantly influence blast % and lactate dehydrogenase (LDH) levels in AML patients. When the data were analyzed with respect to clinical variables, the total leukocyte count was elevated for mutation positive group, compared to negative group. In AML patients with NRAS mutations, 60% failed to achieve complete remission (CR), as compared to 34.8% in mutation negative group. These results indicated that NRAS mutations might confer poor drug response. In AML, disease free survival (DFS) in NRAS mutation positive group was lesser, compared to mutation negative group (9.5 months vs. 11.68 months). In ALL patients, DFS of NRAS mutation positive group was lesser than mutation negative group (9.2 months vs. 27.5 months). The CR rate was also lower for mutation-positive patients group, compared to mutation-negative group. In conclusion, these results suggested that presence of NRAS mutation at 12th codon was associated with poor response and poorer DFS in both ALL and AML.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 3","pages":"207-10"},"PeriodicalIF":1.5000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRAS mutations in de novo acute leukemia: prevalence and clinical significance.\",\"authors\":\"Nageswara Rao Dunna, Sugunakar Vuree, Cingeetham Anuradha, Kagita Sailaja, Damineni Surekha, Raghunadha Rao Digumarti, V R Rao, Satish Kumar Yadav, Rajasekhar Reddy, Satti Vishnupriya\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The activating mutations of the Ras gene or other abnormalities in Ras signaling pathway lead to uncontrolled growth factor-independent proliferation of hematopoietic progenitors. Oncogenic mutations in NRAS gene have been observed with variable prevalence in hematopoietic malignancies. In the present study, NRAS mutations were detected using bidirectional sequencing in 264 acute leukemia cases--129 acute lymphocytic leukemia (ALL) and 135 acute myeloid leukemia (AML) and 245 age- and gender-matched controls. Missense mutation was observed only in the 12th codon of NRAS gene in 4.7% of AML and 3.16% of ALL cases. The presence of NRAS mutation did not significantly influence blast % and lactate dehydrogenase (LDH) levels in AML patients. When the data were analyzed with respect to clinical variables, the total leukocyte count was elevated for mutation positive group, compared to negative group. In AML patients with NRAS mutations, 60% failed to achieve complete remission (CR), as compared to 34.8% in mutation negative group. These results indicated that NRAS mutations might confer poor drug response. In AML, disease free survival (DFS) in NRAS mutation positive group was lesser, compared to mutation negative group (9.5 months vs. 11.68 months). In ALL patients, DFS of NRAS mutation positive group was lesser than mutation negative group (9.2 months vs. 27.5 months). The CR rate was also lower for mutation-positive patients group, compared to mutation-negative group. In conclusion, these results suggested that presence of NRAS mutation at 12th codon was associated with poor response and poorer DFS in both ALL and AML.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 3\",\"pages\":\"207-10\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NRAS mutations in de novo acute leukemia: prevalence and clinical significance.
The activating mutations of the Ras gene or other abnormalities in Ras signaling pathway lead to uncontrolled growth factor-independent proliferation of hematopoietic progenitors. Oncogenic mutations in NRAS gene have been observed with variable prevalence in hematopoietic malignancies. In the present study, NRAS mutations were detected using bidirectional sequencing in 264 acute leukemia cases--129 acute lymphocytic leukemia (ALL) and 135 acute myeloid leukemia (AML) and 245 age- and gender-matched controls. Missense mutation was observed only in the 12th codon of NRAS gene in 4.7% of AML and 3.16% of ALL cases. The presence of NRAS mutation did not significantly influence blast % and lactate dehydrogenase (LDH) levels in AML patients. When the data were analyzed with respect to clinical variables, the total leukocyte count was elevated for mutation positive group, compared to negative group. In AML patients with NRAS mutations, 60% failed to achieve complete remission (CR), as compared to 34.8% in mutation negative group. These results indicated that NRAS mutations might confer poor drug response. In AML, disease free survival (DFS) in NRAS mutation positive group was lesser, compared to mutation negative group (9.5 months vs. 11.68 months). In ALL patients, DFS of NRAS mutation positive group was lesser than mutation negative group (9.2 months vs. 27.5 months). The CR rate was also lower for mutation-positive patients group, compared to mutation-negative group. In conclusion, these results suggested that presence of NRAS mutation at 12th codon was associated with poor response and poorer DFS in both ALL and AML.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.