导致统计特征最准确估计的数据匿名化:模糊动机方法。

G Xiang, S Ferson, L Ginzburg, L Longpré, E Mayorga, O Kosheleva
{"title":"导致统计特征最准确估计的数据匿名化:模糊动机方法。","authors":"G Xiang,&nbsp;S Ferson,&nbsp;L Ginzburg,&nbsp;L Longpré,&nbsp;E Mayorga,&nbsp;O Kosheleva","doi":"10.1109/IFSA-NAFIPS.2013.6608471","DOIUrl":null,"url":null,"abstract":"<p><p>To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated <i>weighted</i> estimates, and we explain how to optimally select the corresponding weights.</p>","PeriodicalId":90701,"journal":{"name":"Proceedings. IFSA World Congress","volume":" ","pages":"611-616"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IFSA-NAFIPS.2013.6608471","citationCount":"0","resultStr":"{\"title\":\"Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach.\",\"authors\":\"G Xiang,&nbsp;S Ferson,&nbsp;L Ginzburg,&nbsp;L Longpré,&nbsp;E Mayorga,&nbsp;O Kosheleva\",\"doi\":\"10.1109/IFSA-NAFIPS.2013.6608471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated <i>weighted</i> estimates, and we explain how to optimally select the corresponding weights.</p>\",\"PeriodicalId\":90701,\"journal\":{\"name\":\"Proceedings. IFSA World Congress\",\"volume\":\" \",\"pages\":\"611-616\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IFSA-NAFIPS.2013.6608471\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IFSA World Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFSA-NAFIPS.2013.6608471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IFSA World Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFSA-NAFIPS.2013.6608471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保护隐私,原始数据点(具有精确值)被包含每个(不可访问的)数据点的框所取代。这种隐私驱动的不确定性导致基于该数据计算的统计特征存在不确定性。在之前的一篇论文中,我们描述了如何在假设我们对期望的特性使用相同的标准统计估计的情况下最小化这种不确定性。在本文中,我们表明,如果我们允许模糊动机加权估计,我们可以进一步降低结果的不确定性,并解释了如何最佳地选择相应的权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach.

To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信