Leila C B Zanatta, Cesar L Boguszewski, Victoria Z C Borba, Carolina A M Kulak
{"title":"骨钙素,能量和葡萄糖代谢。","authors":"Leila C B Zanatta, Cesar L Boguszewski, Victoria Z C Borba, Carolina A M Kulak","doi":"10.1590/0004-2730000003333","DOIUrl":null,"url":null,"abstract":"<p><p>Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Undercarboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome. </p>","PeriodicalId":8395,"journal":{"name":"Arquivos brasileiros de endocrinologia e metabologia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1590/0004-2730000003333","citationCount":"58","resultStr":"{\"title\":\"Osteocalcin, energy and glucose metabolism.\",\"authors\":\"Leila C B Zanatta, Cesar L Boguszewski, Victoria Z C Borba, Carolina A M Kulak\",\"doi\":\"10.1590/0004-2730000003333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Undercarboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome. </p>\",\"PeriodicalId\":8395,\"journal\":{\"name\":\"Arquivos brasileiros de endocrinologia e metabologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1590/0004-2730000003333\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arquivos brasileiros de endocrinologia e metabologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0004-2730000003333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arquivos brasileiros de endocrinologia e metabologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0004-2730000003333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Undercarboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome.