{"title":"3D-QSAR联合方法在硅中发现和分析神经氨酸酶抑制剂的发展。","authors":"Chun-Yuan Lin, Hsiao-Chieh Chi, Kuei-Chung Shih, Jiayi Zhou, Nai-Wan Hsiao, Chuan-Yi Tang","doi":"10.1504/ijdmb.2014.060053","DOIUrl":null,"url":null,"abstract":"<p><p>Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"9 3","pages":"305-20"},"PeriodicalIF":0.2000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2014.060053","citationCount":"0","resultStr":"{\"title\":\"Development of 3D-QSAR combination approach for discovering and analysing neuraminidase inhibitors in silico.\",\"authors\":\"Chun-Yuan Lin, Hsiao-Chieh Chi, Kuei-Chung Shih, Jiayi Zhou, Nai-Wan Hsiao, Chuan-Yi Tang\",\"doi\":\"10.1504/ijdmb.2014.060053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.</p>\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"9 3\",\"pages\":\"305-20\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2014.060053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2014.060053\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2014.060053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Development of 3D-QSAR combination approach for discovering and analysing neuraminidase inhibitors in silico.
Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.