{"title":"GWAS的基因集分析:评估改良Kolmogorov-Smirnov统计的使用。","authors":"Birgit Debrabant, Mette Soerensen","doi":"10.1515/sagmb-2013-0015","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the corresponding test can be considered to infer the classical self-contained null hypothesis. We use simulations to estimate the power for different kinds of alternatives, and to assess the impact of the weight parameter of the modified KS statistic on the power. Finally, we show the analogy between the weight parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"13 5","pages":"553-66"},"PeriodicalIF":0.8000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0015","citationCount":"3","resultStr":"{\"title\":\"Gene set analysis for GWAS: assessing the use of modified Kolmogorov-Smirnov statistics.\",\"authors\":\"Birgit Debrabant, Mette Soerensen\",\"doi\":\"10.1515/sagmb-2013-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the corresponding test can be considered to infer the classical self-contained null hypothesis. We use simulations to estimate the power for different kinds of alternatives, and to assess the impact of the weight parameter of the modified KS statistic on the power. Finally, we show the analogy between the weight parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"13 5\",\"pages\":\"553-66\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2013-0015\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2013-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gene set analysis for GWAS: assessing the use of modified Kolmogorov-Smirnov statistics.
We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the corresponding test can be considered to infer the classical self-contained null hypothesis. We use simulations to estimate the power for different kinds of alternatives, and to assess the impact of the weight parameter of the modified KS statistic on the power. Finally, we show the analogy between the weight parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.