Juliana Velez, Leonardo José Enciso, Marta Suarez, Michael Fiegl, Adriana Grismaldo, Catalina López, Alfonso Barreto, Claudia Cardozo, Pilar Palacios, Ludis Morales, Jorge Eduardo Duque, Jorge Uriel Carmona, Marina Konopleva, Michael Andreeff, Ismael Samudio
{"title":"血小板促进白血病细胞线粒体解偶联和抗凋亡:骨髓微环境的新范式。","authors":"Juliana Velez, Leonardo José Enciso, Marta Suarez, Michael Fiegl, Adriana Grismaldo, Catalina López, Alfonso Barreto, Claudia Cardozo, Pilar Palacios, Ludis Morales, Jorge Eduardo Duque, Jorge Uriel Carmona, Marina Konopleva, Michael Andreeff, Ismael Samudio","doi":"10.1007/s12307-014-0149-3","DOIUrl":null,"url":null,"abstract":"<p><p>Here we report that leukemia cell lines and primary CD34+ leukemic blasts exposed to platelet rich plasma (PRP) or platelet lysates (PL) display increased resistance to apoptosis induced by mitochondria-targeted agents ABT-737 and CDDO-Me. Intriguingly, leukemia cells exposed to platelet components demonstrate a reduction in mitochondrial membrane potential (ΔΨM) and a transient increase in oxygen consumption, suggestive of mitochondrial uncoupling. Accompanying the ranolazine-sensitive increase in oxygen consumption, a reduction in triglyceride content was also observed in leukemia cells cultured with platelet components indicating that lipolysis and fatty acid oxidation may support the molecular reduction of oxygen in these cells. Mechanistically, platelet components antagonized Bax oligomerization in accordance with previous observations supporting an antiapoptotic role for fatty acid oxidation in leukemia cells. Lastly, substantiating the notion that mitochondrial uncoupling reduces oxidative stress, platelet components induced a marked decrease in basal and rotenone-induced superoxide levels in leukemia cells. Taken together, the decrease in ΔΨM, the transient increase in ranolazine-sensitive oxygen consumption, the reduction in triglyceride levels, and the reduced generation of superoxide, all accompanying the increased resistance to mitochondrial apoptosis, substantiate the hypothesis that platelets may contribute to the chemoprotective sanctuary of the bone marrow microenvironment via promotion of mitochondrial uncoupling. </p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"7 1-2","pages":"79-90"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-014-0149-3","citationCount":"26","resultStr":"{\"title\":\"Platelets promote mitochondrial uncoupling and resistance to apoptosis in leukemia cells: a novel paradigm for the bone marrow microenvironment.\",\"authors\":\"Juliana Velez, Leonardo José Enciso, Marta Suarez, Michael Fiegl, Adriana Grismaldo, Catalina López, Alfonso Barreto, Claudia Cardozo, Pilar Palacios, Ludis Morales, Jorge Eduardo Duque, Jorge Uriel Carmona, Marina Konopleva, Michael Andreeff, Ismael Samudio\",\"doi\":\"10.1007/s12307-014-0149-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we report that leukemia cell lines and primary CD34+ leukemic blasts exposed to platelet rich plasma (PRP) or platelet lysates (PL) display increased resistance to apoptosis induced by mitochondria-targeted agents ABT-737 and CDDO-Me. Intriguingly, leukemia cells exposed to platelet components demonstrate a reduction in mitochondrial membrane potential (ΔΨM) and a transient increase in oxygen consumption, suggestive of mitochondrial uncoupling. Accompanying the ranolazine-sensitive increase in oxygen consumption, a reduction in triglyceride content was also observed in leukemia cells cultured with platelet components indicating that lipolysis and fatty acid oxidation may support the molecular reduction of oxygen in these cells. Mechanistically, platelet components antagonized Bax oligomerization in accordance with previous observations supporting an antiapoptotic role for fatty acid oxidation in leukemia cells. Lastly, substantiating the notion that mitochondrial uncoupling reduces oxidative stress, platelet components induced a marked decrease in basal and rotenone-induced superoxide levels in leukemia cells. Taken together, the decrease in ΔΨM, the transient increase in ranolazine-sensitive oxygen consumption, the reduction in triglyceride levels, and the reduced generation of superoxide, all accompanying the increased resistance to mitochondrial apoptosis, substantiate the hypothesis that platelets may contribute to the chemoprotective sanctuary of the bone marrow microenvironment via promotion of mitochondrial uncoupling. </p>\",\"PeriodicalId\":9425,\"journal\":{\"name\":\"Cancer Microenvironment\",\"volume\":\"7 1-2\",\"pages\":\"79-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12307-014-0149-3\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12307-014-0149-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12307-014-0149-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Platelets promote mitochondrial uncoupling and resistance to apoptosis in leukemia cells: a novel paradigm for the bone marrow microenvironment.
Here we report that leukemia cell lines and primary CD34+ leukemic blasts exposed to platelet rich plasma (PRP) or platelet lysates (PL) display increased resistance to apoptosis induced by mitochondria-targeted agents ABT-737 and CDDO-Me. Intriguingly, leukemia cells exposed to platelet components demonstrate a reduction in mitochondrial membrane potential (ΔΨM) and a transient increase in oxygen consumption, suggestive of mitochondrial uncoupling. Accompanying the ranolazine-sensitive increase in oxygen consumption, a reduction in triglyceride content was also observed in leukemia cells cultured with platelet components indicating that lipolysis and fatty acid oxidation may support the molecular reduction of oxygen in these cells. Mechanistically, platelet components antagonized Bax oligomerization in accordance with previous observations supporting an antiapoptotic role for fatty acid oxidation in leukemia cells. Lastly, substantiating the notion that mitochondrial uncoupling reduces oxidative stress, platelet components induced a marked decrease in basal and rotenone-induced superoxide levels in leukemia cells. Taken together, the decrease in ΔΨM, the transient increase in ranolazine-sensitive oxygen consumption, the reduction in triglyceride levels, and the reduced generation of superoxide, all accompanying the increased resistance to mitochondrial apoptosis, substantiate the hypothesis that platelets may contribute to the chemoprotective sanctuary of the bone marrow microenvironment via promotion of mitochondrial uncoupling.
期刊介绍:
Cancer Microenvironment is the official journal of the International Cancer Microenvironment Society (ICMS). It publishes original studies in all aspects of basic, clinical and translational research devoted to the study of cancer microenvironment. It also features reports on clinical trials.
Coverage in Cancer Microenvironment includes: regulation of gene expression in the cancer microenvironment; innate and adaptive immunity in the cancer microenvironment, inflammation and cancer; tumor-associated stroma and extracellular matrix, tumor-endothelium interactions (angiogenesis, extravasation), cancer stem cells, the metastatic niche, targeting the tumor microenvironment: preclinical and clinical trials.