智能方法分析睡眠呼吸暂停/低呼吸综合征的呼吸信号和氧饱和度。

The open medical informatics journal Pub Date : 2014-06-13 eCollection Date: 2014-01-01 DOI:10.2174/1874431101408010001
Vicente Moret-Bonillo, Diego Alvarez-Estévez, Angel Fernández-Leal, Elena Hernández-Pereira
{"title":"智能方法分析睡眠呼吸暂停/低呼吸综合征的呼吸信号和氧饱和度。","authors":"Vicente Moret-Bonillo,&nbsp;Diego Alvarez-Estévez,&nbsp;Angel Fernández-Leal,&nbsp;Elena Hernández-Pereira","doi":"10.2174/1874431101408010001","DOIUrl":null,"url":null,"abstract":"<p><p>This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints. </p>","PeriodicalId":88331,"journal":{"name":"The open medical informatics journal","volume":"8 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7b/8f/TOMINFOJ-8-1.PMC4101190.pdf","citationCount":"17","resultStr":"{\"title\":\"Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome.\",\"authors\":\"Vicente Moret-Bonillo,&nbsp;Diego Alvarez-Estévez,&nbsp;Angel Fernández-Leal,&nbsp;Elena Hernández-Pereira\",\"doi\":\"10.2174/1874431101408010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints. </p>\",\"PeriodicalId\":88331,\"journal\":{\"name\":\"The open medical informatics journal\",\"volume\":\"8 \",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7b/8f/TOMINFOJ-8-1.PMC4101190.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open medical informatics journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874431101408010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open medical informatics journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874431101408010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本研究旨在通过对呼吸信号和动脉血氧饱和度(SaO2)的分析,为睡眠呼吸暂停/低呼吸综合征(SAHS)的临床诊断提供一种智能方法。为了完成这项任务,该方法利用了不同的人工智能技术和能够处理不精确数据的推理过程。这些推理过程基于模糊逻辑和对信息的时间分析。所开发的方法还考虑了被监测信号中存在伪影的可能性。检测和表征信号伪影允许检测假阳性。通过时间约束的实现来识别相关的诊断模式和事件的时间相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome.

Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome.

Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome.

Intelligent approach for analysis of respiratory signals and oxygen saturation in the sleep apnea/hypopnea syndrome.

This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信