{"title":"WNK1/HSN2亚型与KCC2活性调控。","authors":"Valérie Bercier","doi":"10.4161/rdis.26537","DOIUrl":null,"url":null,"abstract":"<p><p>Hereditary sensory and autonomic neuropathy type 2 is a rare autosomal recessive pathology presenting with early onset peripheral sensory defects. It arises from mutations affecting a specific isoform of the WNK1 kinase (with-no-lysine protein kinase 1) termed WNK1/HSN2. The role of WNK1 in the nervous system is not well understood. In our recent paper, we examined the effect of a pathological loss-of-function of the Wnk1/Hsn2 isoform on the development of the peripheral nervous system of the zebrafish embryo. Upon Wnk1/Hsn2 silencing using antisense morpholino oligonucleotides, we observed defects in the development of the sensory peripheral lateral line (PLL). Phenotypical embryos were also found to overexpress RNA for potassium-chloride cotransporter 2 (KCC2), a downstream target of WNK1 phosphorylation. Injection of recombinant mRNA for active KCC2, but not for inactive mutant KCC2-C568A, replicated the PLL defects observed in wnk1/hsn2 deficient animals, suggesting an essential role for WNK1/HSN2 in KCC2 regulation. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"1 ","pages":"e26537"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/rdis.26537","citationCount":"3","resultStr":"{\"title\":\"WNK1/HSN2 isoform and the regulation of KCC2 activity.\",\"authors\":\"Valérie Bercier\",\"doi\":\"10.4161/rdis.26537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hereditary sensory and autonomic neuropathy type 2 is a rare autosomal recessive pathology presenting with early onset peripheral sensory defects. It arises from mutations affecting a specific isoform of the WNK1 kinase (with-no-lysine protein kinase 1) termed WNK1/HSN2. The role of WNK1 in the nervous system is not well understood. In our recent paper, we examined the effect of a pathological loss-of-function of the Wnk1/Hsn2 isoform on the development of the peripheral nervous system of the zebrafish embryo. Upon Wnk1/Hsn2 silencing using antisense morpholino oligonucleotides, we observed defects in the development of the sensory peripheral lateral line (PLL). Phenotypical embryos were also found to overexpress RNA for potassium-chloride cotransporter 2 (KCC2), a downstream target of WNK1 phosphorylation. Injection of recombinant mRNA for active KCC2, but not for inactive mutant KCC2-C568A, replicated the PLL defects observed in wnk1/hsn2 deficient animals, suggesting an essential role for WNK1/HSN2 in KCC2 regulation. </p>\",\"PeriodicalId\":74639,\"journal\":{\"name\":\"Rare diseases (Austin, Tex.)\",\"volume\":\"1 \",\"pages\":\"e26537\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/rdis.26537\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare diseases (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/rdis.26537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/rdis.26537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
WNK1/HSN2 isoform and the regulation of KCC2 activity.
Hereditary sensory and autonomic neuropathy type 2 is a rare autosomal recessive pathology presenting with early onset peripheral sensory defects. It arises from mutations affecting a specific isoform of the WNK1 kinase (with-no-lysine protein kinase 1) termed WNK1/HSN2. The role of WNK1 in the nervous system is not well understood. In our recent paper, we examined the effect of a pathological loss-of-function of the Wnk1/Hsn2 isoform on the development of the peripheral nervous system of the zebrafish embryo. Upon Wnk1/Hsn2 silencing using antisense morpholino oligonucleotides, we observed defects in the development of the sensory peripheral lateral line (PLL). Phenotypical embryos were also found to overexpress RNA for potassium-chloride cotransporter 2 (KCC2), a downstream target of WNK1 phosphorylation. Injection of recombinant mRNA for active KCC2, but not for inactive mutant KCC2-C568A, replicated the PLL defects observed in wnk1/hsn2 deficient animals, suggesting an essential role for WNK1/HSN2 in KCC2 regulation.