表观遗传机制与记忆强度的比较研究

Q Medicine
Noel Federman , Gisela Zalcman , Verónica de la Fuente , Maria Sol Fustiñana , Arturo Romano
{"title":"表观遗传机制与记忆强度的比较研究","authors":"Noel Federman ,&nbsp;Gisela Zalcman ,&nbsp;Verónica de la Fuente ,&nbsp;Maria Sol Fustiñana ,&nbsp;Arturo Romano","doi":"10.1016/j.jphysparis.2014.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Memory consolidation requires <em>de novo</em> mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modification<del>s</del> related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5<!--> <!-->years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab <em>Neohelice granulata</em>, as well as during consolidation of novel object recognition memory in the mouse <em>Mus musculus</em>. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.</p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"108 4","pages":"Pages 278-285"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.06.003","citationCount":"10","resultStr":"{\"title\":\"Epigenetic mechanisms and memory strength: A comparative study\",\"authors\":\"Noel Federman ,&nbsp;Gisela Zalcman ,&nbsp;Verónica de la Fuente ,&nbsp;Maria Sol Fustiñana ,&nbsp;Arturo Romano\",\"doi\":\"10.1016/j.jphysparis.2014.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Memory consolidation requires <em>de novo</em> mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modification<del>s</del> related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5<!--> <!-->years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab <em>Neohelice granulata</em>, as well as during consolidation of novel object recognition memory in the mouse <em>Mus musculus</em>. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.</p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"108 4\",\"pages\":\"Pages 278-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.06.003\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425714000266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425714000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

摘要

记忆巩固需要从头合成mRNA和蛋白质。转录激活是由转录因子及其辅助因子和抑制因子控制的。辅助因子和抑制因子通过与基础转录机制、重塑染色质结构和/或化学修饰组蛋白相互作用来调节基因表达。乙酰化是研究最多的与基因表达相关的组蛋白修饰的表观遗传机制。这一过程由组蛋白乙酰化酶(HATs)和组蛋白去乙酰化酶(HDACs)调控。5年前,我们开始了一系列关于组蛋白乙酰化在记忆巩固中的作用的研究。在此,我们回顾了我们的工作,提供了证据,证明这种表观遗传机制在蟹新helice granulata的情境信号记忆巩固过程中发挥了关键作用,以及在小鼠小家鼠的新物体识别记忆巩固过程中发挥了关键作用。我们的证据表明,组蛋白乙酰化是记忆巩固的关键机制,是强记忆的独特分子特征。此外,我们发现记忆的强度可以通过它的持久性或对消失的抵抗力来表征。此外,我们发现这种调节基因表达的表观遗传机制只在最强记忆的形成中起着进化保守的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenetic mechanisms and memory strength: A comparative study

Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-Paris
Journal of Physiology-Paris 医学-神经科学
CiteScore
2.02
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信