Hawkes过程混合社会网络中的二元事件归因。

Liangda Li, Hongyuan Zha
{"title":"Hawkes过程混合社会网络中的二元事件归因。","authors":"Liangda Li,&nbsp;Hongyuan Zha","doi":"10.1145/2505515.2505609","DOIUrl":null,"url":null,"abstract":"<p><p>In many applications in social network analysis, it is important to model the interactions and infer the influence between pairs of actors, leading to the problem of dyadic event modeling which has attracted increasing interests recently. In this paper we focus on the problem of dyadic event attribution, an important missing data problem in dyadic event modeling where one needs to infer the missing actor-pairs of a subset of dyadic events based on their observed timestamps. Existing works either use fixed model parameters and heuristic rules for event attribution, or assume the dyadic events across actor-pairs are independent. To address those shortcomings we propose a probabilistic model based on mixtures of Hawkes processes that simultaneously tackles event attribution and network parameter inference, taking into consideration the dependency among dyadic events that share at least one actor. We also investigate using additive models to incorporate regularization to avoid overfitting. Our experiments on both synthetic and real-world data sets on international armed conflicts suggest that the proposed new method is capable of significantly improve accuracy when compared with the state-of-the-art for dyadic event attribution.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":" ","pages":"1667-1672"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2505515.2505609","citationCount":"34","resultStr":"{\"title\":\"Dyadic Event Attribution in Social Networks with Mixtures of Hawkes Processes.\",\"authors\":\"Liangda Li,&nbsp;Hongyuan Zha\",\"doi\":\"10.1145/2505515.2505609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many applications in social network analysis, it is important to model the interactions and infer the influence between pairs of actors, leading to the problem of dyadic event modeling which has attracted increasing interests recently. In this paper we focus on the problem of dyadic event attribution, an important missing data problem in dyadic event modeling where one needs to infer the missing actor-pairs of a subset of dyadic events based on their observed timestamps. Existing works either use fixed model parameters and heuristic rules for event attribution, or assume the dyadic events across actor-pairs are independent. To address those shortcomings we propose a probabilistic model based on mixtures of Hawkes processes that simultaneously tackles event attribution and network parameter inference, taking into consideration the dependency among dyadic events that share at least one actor. We also investigate using additive models to incorporate regularization to avoid overfitting. Our experiments on both synthetic and real-world data sets on international armed conflicts suggest that the proposed new method is capable of significantly improve accuracy when compared with the state-of-the-art for dyadic event attribution.</p>\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\" \",\"pages\":\"1667-1672\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2505515.2505609\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在社会网络分析的许多应用中,对行为者对之间的相互作用和影响进行建模是很重要的,这导致了二元事件建模问题,近年来引起了人们越来越多的关注。本文主要研究了二元事件归属问题,这是二元事件建模中一个重要的缺失数据问题,需要根据观察到的时间戳推断出二元事件子集中缺失的行动者对。现有的研究要么使用固定的模型参数和启发式规则进行事件归因,要么假设跨行为者对的二元事件是独立的。为了解决这些缺点,我们提出了一个基于霍克斯过程混合的概率模型,该模型同时处理事件归因和网络参数推理,考虑到共享至少一个参与者的二元事件之间的依赖性。我们还研究了使用加性模型来纳入正则化以避免过拟合。我们对国际武装冲突的合成和真实数据集进行的实验表明,与最先进的二元事件归因方法相比,所提出的新方法能够显著提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dyadic Event Attribution in Social Networks with Mixtures of Hawkes Processes.

In many applications in social network analysis, it is important to model the interactions and infer the influence between pairs of actors, leading to the problem of dyadic event modeling which has attracted increasing interests recently. In this paper we focus on the problem of dyadic event attribution, an important missing data problem in dyadic event modeling where one needs to infer the missing actor-pairs of a subset of dyadic events based on their observed timestamps. Existing works either use fixed model parameters and heuristic rules for event attribution, or assume the dyadic events across actor-pairs are independent. To address those shortcomings we propose a probabilistic model based on mixtures of Hawkes processes that simultaneously tackles event attribution and network parameter inference, taking into consideration the dependency among dyadic events that share at least one actor. We also investigate using additive models to incorporate regularization to avoid overfitting. Our experiments on both synthetic and real-world data sets on international armed conflicts suggest that the proposed new method is capable of significantly improve accuracy when compared with the state-of-the-art for dyadic event attribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信