网络完成静态基因表达数据。

Q1 Biochemistry, Genetics and Molecular Biology
Advances in Bioinformatics Pub Date : 2014-01-01 Epub Date: 2014-03-26 DOI:10.1155/2014/382452
Natsu Nakajima, Tatsuya Akutsu
{"title":"网络完成静态基因表达数据。","authors":"Natsu Nakajima,&nbsp;Tatsuya Akutsu","doi":"10.1155/2014/382452","DOIUrl":null,"url":null,"abstract":"<p><p>We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"382452"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/382452","citationCount":"3","resultStr":"{\"title\":\"Network completion for static gene expression data.\",\"authors\":\"Natsu Nakajima,&nbsp;Tatsuya Akutsu\",\"doi\":\"10.1155/2014/382452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data. </p>\",\"PeriodicalId\":39059,\"journal\":{\"name\":\"Advances in Bioinformatics\",\"volume\":\"2014 \",\"pages\":\"382452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/382452\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/382452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/382452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

我们从静态数据中解决了在固定条件下完成和推断遗传网络的问题,其中网络完成是对初始网络进行最少的修改,使完成的网络与表达数据最一致,其中添加边和删除边是基本的修改操作。针对这一问题,提出了一种基于动态规划和最小二乘拟合的网络补全方法。该方法可以在多项式时间内找到网络的最优解,只要网络的最大度有一个常数为界。我们通过使用合成数据的计算实验来评估我们方法的有效性。此外,我们证明了我们提出的方法可以从肺癌和正常基因表达数据中区分两种基因网络在平稳条件下的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Network completion for static gene expression data.

Network completion for static gene expression data.

Network completion for static gene expression data.

Network completion for static gene expression data.

We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信