{"title":"快照法检测非小细胞肺癌多基因突变谱。","authors":"Jian Su, Xu-Chao Zhang, She-Juan An, Wen-Zhao Zhong, Ying Huang, Shi-Liang Chen, Hong-Hong Yan, Zhi-Hong Chen, Wei-Bang Guo, Xiao-Sui Huang, Yi-Long Wu","doi":"10.5732/cjc.013.10195","DOIUrl":null,"url":null,"abstract":"<p><p>As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice. </p>","PeriodicalId":10034,"journal":{"name":"癌症","volume":"33 7","pages":"346-50"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/c2/cjc-33-07-346.PMC4110467.pdf","citationCount":"18","resultStr":"{\"title\":\"Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay.\",\"authors\":\"Jian Su, Xu-Chao Zhang, She-Juan An, Wen-Zhao Zhong, Ying Huang, Shi-Liang Chen, Hong-Hong Yan, Zhi-Hong Chen, Wei-Bang Guo, Xiao-Sui Huang, Yi-Long Wu\",\"doi\":\"10.5732/cjc.013.10195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice. </p>\",\"PeriodicalId\":10034,\"journal\":{\"name\":\"癌症\",\"volume\":\"33 7\",\"pages\":\"346-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/c2/cjc-33-07-346.PMC4110467.pdf\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5732/cjc.013.10195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5732/cjc.013.10195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/8 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay.
As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice.
期刊介绍:
In July 2008, Landes Bioscience and Sun Yat-sen University Cancer Center began co-publishing the international, English-language version of AI ZHENG or the Chinese Journal of Cancer (CJC). CJC publishes original research, reviews, extra views, perspectives, supplements, and spotlights in all areas of cancer research. The primary criteria for publication in CJC are originality, outstanding scientific merit, and general interest. The Editorial Board is composed of members from around the world, who will strive to maintain the highest standards for excellence in order to generate a valuable resource for an international readership.